This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. To address the major cause of death in the United States, heart disease, we will testing a new form of cell-based therapy to regenerate diseased or damaged myocardium.
We aim to test the ability of rhesus embryonic stems (ES) cells to regenerate heart muscle following myocardial infarction. Utilizing the rhesus myocardial infarction model established in previous years, we have tested catheter based intracoronary artery delivery of rhesus embryonic stem cells post-reperfusion of the infarct related artery. Our pilot animal demonstrated significant no reflow phenomena with infusion of 2X107 rhesus ES cells resulting in obliteration of perfusion of the targeted coronary bed. This unanticipated result contributed to the formation of a large myocardial infarction. We were able to track Ferridex (small paramagnetic iron oxide) labeled cells using cardiac MRI imaging in living animals. A significant volume of cells remained in the myocardium based on MRI imaging and on pathology evaluation at 2 months. Based on these results we revised our cell delivery approach and piloted intramyocardial delivery of cells using direct intramural injection rather than intracoronary delivery. This research used WNPRC Animal Services; WNPRC Stem Cell resource; and WNPRC Pathology Services.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000167-46
Application #
7349417
Study Section
Special Emphasis Panel (ZRR1-CM-9 (01))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
46
Fiscal Year
2006
Total Cost
$27,215
Indirect Cost
Name
University of Wisconsin Madison
Department
Veterinary Sciences
Type
Other Domestic Higher Education
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Kang, HyunJun; Mesquitta, Walatta-Tseyon; Jung, Ho Sun et al. (2018) GATA2 Is Dispensable for Specification of Hemogenic Endothelium but Promotes Endothelial-to-Hematopoietic Transition. Stem Cell Reports 11:197-211
Rhoads, Timothy W; Burhans, Maggie S; Chen, Vincent B et al. (2018) Caloric Restriction Engages Hepatic RNA Processing Mechanisms in Rhesus Monkeys. Cell Metab 27:677-688.e5
Ellis-Connell, Amy L; Balgeman, Alexis J; Zarbock, Katie R et al. (2018) ALT-803 Transiently Reduces Simian Immunodeficiency Virus Replication in the Absence of Antiretroviral Treatment. J Virol 92:
Park, Mi Ae; Jung, Ho Sun; Slukvin, Igor (2018) Genetic Engineering of Human Pluripotent Stem Cells Using PiggyBac Transposon System. Curr Protoc Stem Cell Biol 47:e63
Ellis, Amy; Balgeman, Alexis; Rodgers, Mark et al. (2017) Characterization of T Cells Specific for CFP-10 and ESAT-6 in Mycobacterium tuberculosis-Infected Mauritian Cynomolgus Macaques. Infect Immun 85:
Rodrigues, Michelle A (2017) Female Spider Monkeys (Ateles geoffroyi) Cope with Anthropogenic Disturbance Through Fission-Fusion Dynamics. Int J Primatol 38:838-855
Buechler, Connor R; Bailey, Adam L; Lauck, Michael et al. (2017) Genome Sequence of a Novel Kunsagivirus (Picornaviridae: Kunsagivirus) from a Wild Baboon (Papio cynocephalus). Genome Announc 5:
Wu, Hong; Whritenour, Jessica; Sanford, Jonathan C et al. (2017) Identification of MHC Haplotypes Associated with Drug-induced Hypersensitivity Reactions in Cynomolgus Monkeys. Toxicol Pathol 45:127-133
Shackman, A J; Fox, A S; Oler, J A et al. (2017) Heightened extended amygdala metabolism following threat characterizes the early phenotypic risk to develop anxiety-related psychopathology. Mol Psychiatry 22:724-732
Kalin, Ned H (2017) Mechanisms underlying the early risk to develop anxiety and depression: A translational approach. Eur Neuropsychopharmacol 27:543-553

Showing the most recent 10 out of 528 publications