This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Dengue virus is the biggest new epidemic in America and Asia. The new cases and more severe hemorrhagic cases are increasing due to the spread of Aedes aegypti mosquito as well as for the lower socio-economical conditions of the people of such regions of the world. The increase in severity is linked to secondary infections of more than one of the four types of viruses, DEN 1,2,3 and 4. We propose to use Rhesus monkeys to provide a sets of tests to better monitor the infection of dengue virus and to better understand the pathophysiology of the disease. We will determine viremia and use new markers of dengue virus infection including sub-populations of blood cells over time. In addition, we will manipulate the immune system of the animals in such way that clearance of the virus and numbers of circulating blood cells can be investigated. The introduction of new infection markers that are potentially more sensitive than the detection of virus RNA or virus antigen NS1 in blood would help us validate such markers for their future use in patients, and will contribute to a better understanding of the progression of the disease in vivo. By providing clinical parameters over time during the infection process in the Rhesus model, time-related changes of the absolute numbers of circulating blood cells, viremia, coagulation studies and liver and muscle damage of each animal, we will be able to provide a complete clinical model of dengue disease. This year, when massive amounts of children will be vaccinated with a commercial vaccine for dengue, this research will provide the battery of tests that can eventually be used to monitor immunity and hemorrhagic/inflammatory responses.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000168-50
Application #
8357960
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
50
Fiscal Year
2011
Total Cost
$53,995
Indirect Cost
Name
Harvard University
Department
Veterinary Sciences
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
McLean, Will J; Yin, Xiaolei; Lu, Lin et al. (2017) Clonal Expansion of Lgr5-Positive Cells from Mammalian Cochlea and High-Purity Generation of Sensory Hair Cells. Cell Rep 18:1917-1929
Shang, L; Duan, L; Perkey, K E et al. (2017) Epithelium-innate immune cell axis in mucosal responses to SIV. Mucosal Immunol 10:508-519
Isakova, Irina A; Baker, Kate C; Dufour, Jason et al. (2017) Mesenchymal Stem Cells Yield Transient Improvements in Motor Function in an Infant Rhesus Macaque with Severe Early-Onset Krabbe Disease. Stem Cells Transl Med 6:99-109
Ma, Qi; Ruan, Hongyu; Peng, Lisheng et al. (2017) Proteasome-independent polyubiquitin linkage regulates synapse scaffolding, efficacy, and plasticity. Proc Natl Acad Sci U S A 114:E8760-E8769
Termini, James M; Church, Elizabeth S; Silver, Zachary A et al. (2017) Human Immunodeficiency Virus and Simian Immunodeficiency Virus Maintain High Levels of Infectivity in the Complete Absence of Mucin-Type O-Glycosylation. J Virol 91:
Isakova, Irina A; Baker, Kate C; Dufour, Jason et al. (2016) Mesenchymal Stem Cells Yield Transient Improvements in Motor Function in an Infant Rhesus Macaque With Severe Early-Onset Krabbe Disease. Stem Cells Transl Med :
Fischer, Bradford D; Platt, Donna M; Rallapalli, Sundari K et al. (2016) Antagonism of triazolam self-administration in rhesus monkeys responding under a progressive-ratio schedule: In vivo apparent pA2 analysis. Drug Alcohol Depend 158:22-9
Kannanganat, Sunil; Wyatt, Linda S; Gangadhara, Sailaja et al. (2016) High Doses of GM-CSF Inhibit Antibody Responses in Rectal Secretions and Diminish Modified Vaccinia Ankara/Simian Immunodeficiency Virus Vaccine Protection in TRIM5?-Restrictive Macaques. J Immunol 197:3586-3596
Williams, Kenneth; Lackner, Andrew; Mallard, Jaclyn (2016) Non-human primate models of SIV infection and CNS neuropathology. Curr Opin Virol 19:92-8
Yasuda, Koji; Oh, Keunyoung; Ren, Boyu et al. (2015) Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17:385-91

Showing the most recent 10 out of 356 publications