This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. For sensory systems, feed forward projections from thalamic relay cells provide the cortex with information about the external environment. The cortex, in turn, sends extensive feedback to thalamic relay cells. The cortex thus functions both to process information supplied by the thalamus as well as to influence dynamically the transmission of thalamic input. The primary goal of the experiments presented in this proposal is to determine the functional organization of corticogeniculate feedback projections and their influence on visual processing. The proposed study involves four sets of experiments. The first major series of experiments (Specific Aim 1) will test the hypothesis that the corticogeniculate pathway contains physiologically distinct populations of neurons that selectively innervate the magnocellular and parvocellular layers of the LGN. The remaining experiments will examine the functional role of corticogeniculate projections during visual processing. In general, proposed roles for corticogeniculate function fall into two broad categories: (1) the corticothalamic pathway serves to sharpen the receptive field properties of thalamic neurons, and (2) the corticothalamic pathway serves to enhance the transmission of sensory information from periphery to cortex. The second series of experiments (Specific Aim 2) will therefore test the hypothesis that corticogeniculate feedback sharpens LGN receptive fields by suppression from the extraclassical receptive field. The third series of experiments (Specific Aim 3) will test the hypothesis that corticogeniculate feedback adjusts non-spatial aspect of LGN responses. Finally, the fourth series of experiments (Specific Aim 4) will compare the effects of directed attention on corticogeniculate neurons and LGN neurons in order to test the hypothesis that attention and the corticogeniculate pathway influence the gain of LGN responses to visual stimuli. Given the central importance of corticothalamic pathways for governing the excitability of thalamocortical networks, it is important that we understand the functional properties of the corticothalamic pathway, as disorders of the pathway likely underlie several illnesses affecting vision and visual processing.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000169-50
Application #
8357242
Study Section
Special Emphasis Panel (ZRR1-CM-5 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
50
Fiscal Year
2011
Total Cost
$25,212
Indirect Cost
Name
University of California Davis
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Han, Pengcheng; Nielsen, Megan; Song, Melissa et al. (2017) The Impact of Aging on Brain Pituitary Adenylate Cyclase Activating Polypeptide, Pathology and Cognition in Mice and Rhesus Macaques. Front Aging Neurosci 9:180
Pittet, Florent; Johnson, Crystal; Hinde, Katie (2017) Age at reproductive debut: Developmental predictors and consequences for lactation, infant mass, and subsequent reproduction in rhesus macaques (Macaca mulatta). Am J Phys Anthropol 164:457-476
Zhang, Xinjun; Kanthaswamy, Sree; Trask, Jessica S et al. (2017) Genetic Characterization of a Captive Colony of Pigtailed Macaques (Macaca nemestrina). J Am Assoc Lab Anim Sci 56:390-395
Jensen, Kara; Dela Pena-Ponce, Myra Grace; Piatak Jr, Michael et al. (2017) Balancing Trained Immunity with Persistent Immune Activation and the Risk of Simian Immunodeficiency Virus Infection in Infant Macaques Vaccinated with Attenuated Mycobacterium tuberculosis or Mycobacterium bovis BCG Vaccine. Clin Vaccine Immunol 24:
Rose, Destanie R; Careaga, Milo; Van de Water, Judy et al. (2017) Long-term altered immune responses following fetal priming in a non-human primate model of maternal immune activation. Brain Behav Immun 63:60-70
Hasan, M Kamrul; Feeroz, M Mostafa; Jones-Engel, Lisa et al. (2016) Performing monkeys of Bangladesh: characterizing their source and genetic variation. Primates 57:221-30
Austin, Christine; Smith, Tanya M; Farahani, Ramin M Z et al. (2016) Uncovering system-specific stress signatures in primate teeth with multimodal imaging. Sci Rep 6:18802
Scott, Julia A; Grayson, David; Fletcher, Evan et al. (2016) Longitudinal analysis of the developing rhesus monkey brain using magnetic resonance imaging: birth to adulthood. Brain Struct Funct 221:2847-71
Rueda, Cesar M; Presicce, Pietro; Jackson, Courtney M et al. (2016) Lipopolysaccharide-Induced Chorioamnionitis Promotes IL-1-Dependent Inflammatory FOXP3+ CD4+ T Cells in the Fetal Rhesus Macaque. J Immunol 196:3706-15
Bliss-Moreau, Eliza; Moadab, Gilda (2016) Variation in Behavioral Reactivity Is Associated with Cooperative Restraint Training Efficiency. J Am Assoc Lab Anim Sci 55:41-9

Showing the most recent 10 out of 393 publications