This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Cytokine members of the Tumor Necrosis Factor (TNF) Superfamily play key roles in host defense to viral pathogens. In particular, the Lymphotoxin (LT)alpha-beta-LTbeta receptor (LTbetaR) system and other closely related cytokines are required for effective immune defenses against cytomegalovirus (CMV), a beta herpes virus. Both in vitro studies with human CMV and in vivo studies with murine CMV indicate that the LTbetaR system plays a key role in the establishment and maintenance of immunological balance between the host and this persistent virus. Specifically, in vivo activation of the LTbetaR by an agonist anti-LTbetaR antibody can prevent lymphocyte death, restore IFNbeta levels, reorganize lymphoid tissue and extend the survival of MCMV infected, LTalpha-deficient mice. These results indicate that modulating the LTbetaR pathway in vivo can restore immune balance during this viral infection. Human CMV infection remains a stubborn clinical problem especially in immune compromised (chemotherapy or AIDS) patients, and emerging evidence suggests chronic inflammation, associated with persistent viruses like HCMV, may also contribute to cardiovascular disease. Clinically, there exists a particular need for effective treatment of this virus since the efficacy of antiviral drugs has been limited by toxicity and viral resistance. Understanding the limitations of currently available anti-viral treatment provides strong impetus to identify novel approaches that will enhance the host's immune responsiveness while at the same time effectively suppressing virus replication. The goal of this proposal is to test the hypothesis that the LTbetaR is a significant factor in host defense to human CMV. To accomplish this 3 specific aims are proposed to investigate the LT cytokine system in a rhesus macaque primate model of CMV infection (RhCMV), a model which most closely resembles human CMV infection.
In specific aim 1, the LTbetaR signaling pathway will be studied in vitro using agonistic and antagonistic reagents to provide mechanistic data for the in vivo studies proposed in specific aims 2 and 3. These in vivo experiments will directly test the efficacy of LT(R agonists and antagonists as modulators of RhCMV infection and in particular the ability of an agonist anti-LTbetaR antibody to ameliorate the infection in both immunocompetent and immunocompromised macaques. The success of this reagent in macaques should validate this novel immunotherapeutic approach as a potential treatment for human CMV infection.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000169-50
Application #
8357268
Study Section
Special Emphasis Panel (ZRR1-CM-5 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
50
Fiscal Year
2011
Total Cost
$191,444
Indirect Cost
Name
University of California Davis
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Han, Pengcheng; Nielsen, Megan; Song, Melissa et al. (2017) The Impact of Aging on Brain Pituitary Adenylate Cyclase Activating Polypeptide, Pathology and Cognition in Mice and Rhesus Macaques. Front Aging Neurosci 9:180
Pittet, Florent; Johnson, Crystal; Hinde, Katie (2017) Age at reproductive debut: Developmental predictors and consequences for lactation, infant mass, and subsequent reproduction in rhesus macaques (Macaca mulatta). Am J Phys Anthropol 164:457-476
Zhang, Xinjun; Kanthaswamy, Sree; Trask, Jessica S et al. (2017) Genetic Characterization of a Captive Colony of Pigtailed Macaques (Macaca nemestrina). J Am Assoc Lab Anim Sci 56:390-395
Jensen, Kara; Dela Pena-Ponce, Myra Grace; Piatak Jr, Michael et al. (2017) Balancing Trained Immunity with Persistent Immune Activation and the Risk of Simian Immunodeficiency Virus Infection in Infant Macaques Vaccinated with Attenuated Mycobacterium tuberculosis or Mycobacterium bovis BCG Vaccine. Clin Vaccine Immunol 24:
Rose, Destanie R; Careaga, Milo; Van de Water, Judy et al. (2017) Long-term altered immune responses following fetal priming in a non-human primate model of maternal immune activation. Brain Behav Immun 63:60-70
Hasan, M Kamrul; Feeroz, M Mostafa; Jones-Engel, Lisa et al. (2016) Performing monkeys of Bangladesh: characterizing their source and genetic variation. Primates 57:221-30
Austin, Christine; Smith, Tanya M; Farahani, Ramin M Z et al. (2016) Uncovering system-specific stress signatures in primate teeth with multimodal imaging. Sci Rep 6:18802
Scott, Julia A; Grayson, David; Fletcher, Evan et al. (2016) Longitudinal analysis of the developing rhesus monkey brain using magnetic resonance imaging: birth to adulthood. Brain Struct Funct 221:2847-71
Rueda, Cesar M; Presicce, Pietro; Jackson, Courtney M et al. (2016) Lipopolysaccharide-Induced Chorioamnionitis Promotes IL-1-Dependent Inflammatory FOXP3+ CD4+ T Cells in the Fetal Rhesus Macaque. J Immunol 196:3706-15
Bliss-Moreau, Eliza; Moadab, Gilda (2016) Variation in Behavioral Reactivity Is Associated with Cooperative Restraint Training Efficiency. J Am Assoc Lab Anim Sci 55:41-9

Showing the most recent 10 out of 393 publications