Ethanol physiological dependence and associated withdrawal episodes are thought to constitute a motivational force that perpetuates ethanol use/abuse and contributes to relapse. In humans, the identification of genes that influence ethanol physical dependence and withdrawal has been limited. Thus, the use of preclinical (animal) models that closely approximate the clinical situation is essential to elucidate the genes and gene networks involved. Quantitative trait loci (QTLs) are chromosome sites containing alleles (genes) that influence a quantitative (complex) trait such as predisposition to ethanol physiological dependence and associated withdrawal. Our analyses identify with high certainty (LOD>7.6, p<2x10[-9]) QTLs on chromosome 1 that affect withdrawal after both acute and chronic ethanol exposure in mice. Component #6 is focused on a distal chromosome 1 QTL that, during the current funding period, we fine-mapped to a 0.44 Mb interval (syntenic with human Chr 1q23.2). We identified high-quality quantitative trait gene (QTG) candidates and developed a novel knockout (KO) genetic animal model for a particularly promising QTG candidate, Kcnj9. As expected this Kcnj9 KO mice exhibited significantly less severe withdrawal from ethanol as well as pentobarbital and Zolpidem. Kcnj9 encodes GIRK3 (Kir3.3), a subunit member of a family of G-protein-dependent inwardly-rectifying K[+] (GIRK) channels. Component #6 seeks to identify the QTG(s) underlying this chromosome 1 QTL, and assess its potential role in genetically correlated behaviors. We propose the following three aims: (1) Compare Kcnj9 KO and wildtype llttermates for behaviors that are genetically correlated with acute ethanol withdrawal and Kcnj9 expression (i.e., ethanol preference drinking, chronic withdrawal, and impulsivity) as well as withdrawal-induced drinking. (2) Using RNA interference (RNAi), rigorously test the hypothesis that reduced Kcnj9 expression has a causal role to reduce ethanol withdrawal severity. (3) Use available approaches to provide mechanistic information at every opportunity. This will include weighted gene co-expression network analysis (WGCNA) using genetically modified (e.g., Kcnj9 KO or chromosome 1 congenic) and wildtype llttermates. An innovative feature of this proposal is to combine robust behavioral models of ethanol withdrawal with state-of-the-art strategies to elucidate the QTG and its mechanism of action. The proposed work will complete the journey from identifying genetic risk due to anonymous genes to identification of a QTG(s) that confers risk for ethanol withdrawal. This will set the stage for future translational and mechanistic studies.

Public Health Relevance

Alcoholism is one of the most highly heritable addictive disorders, but the genetic determinants of alcoholism remain largely unknown, hindering effective treatment and prevention. Ethanol physiological dependence and associated withdrawal episodes are thought to constitute a motivational force that perpetuates ethanol use/abuse and to contribute to relapse. We have identified a gene {Kcnj9) that appears to substantially influence risk for ethanol withdrawal in mice. Component #6 is focused on rigorously testing the role of this gene in ethanol withdrawal, and assessing its potential role in genetically correlated behaviors.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Comprehensive Center (P60)
Project #
5P60AA010760-18
Application #
8472427
Study Section
Special Emphasis Panel (ZAA1-GG)
Project Start
Project End
Budget Start
2013-01-01
Budget End
2013-12-31
Support Year
18
Fiscal Year
2013
Total Cost
$111,769
Indirect Cost
$22,500
Name
Oregon Health and Science University
Department
Type
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Qiu, J; Wagner, E J; Rønnekleiv, O K et al. (2018) Insulin and leptin excite anorexigenic pro-opiomelanocortin neurones via activation of TRPC5 channels. J Neuroendocrinol 30:
Allen, Daicia C; Ford, Matthew M; Grant, Kathleen A (2018) Cross-Species Translational Findings in the Discriminative Stimulus Effects of Ethanol. Curr Top Behav Neurosci 39:95-111
Aoun, E G; Jimenez, V A; Vendruscolo, L F et al. (2018) A relationship between the aldosterone-mineralocorticoid receptor pathway and alcohol drinking: preliminary translational findings across rats, monkeys and humans. Mol Psychiatry 23:1466-1473
Colville, Alexandre M; Iancu, Ovidiu D; Lockwood, Denesa R et al. (2018) Regional Differences and Similarities in the Brain Transcriptome for Mice Selected for Ethanol Preference From HS-CC Founders. Front Genet 9:300
Xu, Ting; Falchier, Arnaud; Sullivan, Elinor L et al. (2018) Delineating the Macroscale Areal Organization of the Macaque Cortex In Vivo. Cell Rep 23:429-441
Iancu, Ovidiu D; Colville, Alexander; Walter, Nicole A R et al. (2018) On the relationships in rhesus macaques between chronic ethanol consumption and the brain transcriptome. Addict Biol 23:196-205
Morales, Angelica M; Jones, Scott A; Ehlers, Alissa et al. (2018) Ventral striatal response during decision making involving risk and reward is associated with future binge drinking in adolescents. Neuropsychopharmacology 43:1884-1890
Gavin, David P; Hashimoto, Joel G; Lazar, Nathan H et al. (2018) Stable Histone Methylation Changes at Proteoglycan Network Genes Following Ethanol Exposure. Front Genet 9:346
Purohit, Kush; Parekh, Puja K; Kern, Joseph et al. (2018) Pharmacogenetic Manipulation of the Nucleus Accumbens Alters Binge-Like Alcohol Drinking in Mice. Alcohol Clin Exp Res 42:879-888
Müller-Oehring, Eva M; Kwon, Dongjin; Nagel, Bonnie J et al. (2018) Influences of Age, Sex, and Moderate Alcohol Drinking on the Intrinsic Functional Architecture of Adolescent Brains. Cereb Cortex 28:1049-1063

Showing the most recent 10 out of 291 publications