The mission of the Epigenomics Core is to assist investigators in performing specialized epigenomics assays and comprehensive data analyses of these large datasets. Through collaborative efforts with the other Cores of the DRTC, the effects of defined pharmacological, dietary, environmental and genetic alterations are thoroughly characterized for their effects on glucose homeostasis, insulin action, and metabolism. The role of genetic modifications in relevant tissues, such as neurons, hepatocytes, skeletal muscle, adipocytes, beta and immune cells that are related to glucose homeostasis can be directly compared by thorough and definitive experimentation in rodent models. Identification of candidate targets can be functionally confirmed or refuted by the generation of specific mouse models and validated in human populations by comparative analyses in multiple cohorts/populations. Although this is a rapidly developing field, the broad expertise assembled at Einstein's Center for Epigenomics including molecular genetics, bioinformatics and computational biology expertise allows the Epigenomics Core to provide services to DRTC investigators with a wide range of specialized, high quality methodologies and tools relevant to understanding metabolic disease processes. To accomplish these goals, the Epigenomics Core will: 1) make available to investigators specialized high-throughput molecular technological resources including microarray and massively-parallel sequencing platforms to study DNA methylation and chromatin organization;2) provide extensive quality controls and assurance information for all high-throughput assays, generated as part of each analysis;3) provide readily available dedicated systems administrators and programmers, relational database services, high-performance computing resources and data storage/backup systems through the Computational and Statistical Epigenomics Resource and Research Informatics;4) advise investigators regarding the best experimental platforms and protocols to use for the specific biological question being asked;5) disseminate current and new technological development information and foster investigator Interactions through weekly workshops and journal clubs;and 6) provide laboratory training of students, postdoctoral fellows, investigators and technical staff in performing epigenomics methodologies and data analyses. All these services are available to investigators new to diabetes research, as well as to investigators working on diabetes-related projects that can be enriched and extended by the use of the expertise and facilities of this core.

Public Health Relevance

The Epigenomics Core provides cost effective, high quality resources that facilitate the scientific progress made by a large group of scientists committed to improve our understanding of the genetics of diabetes in order to improve the treatment of patients with diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Comprehensive Center (P60)
Project #
5P60DK020541-35
Application #
8377561
Study Section
Special Emphasis Panel (ZDK1-GRB-2)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
35
Fiscal Year
2012
Total Cost
$21,436
Indirect Cost
$8,523
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Carey, Michelle; Gospin, Rebekah; Goyal, Akankasha et al. (2017) Opioid Receptor Activation Impairs Hypoglycemic Counterregulation in Humans. Diabetes 66:2764-2773
Bilanges, Benoit; Alliouachene, Samira; Pearce, Wayne et al. (2017) Vps34 PI 3-kinase inactivation enhances insulin sensitivity through reprogramming of mitochondrial metabolism. Nat Commun 8:1804
Jatkar, Aditi; Kurland, Irwin J; Judex, Stefan (2017) Diets High in Fat or Fructose Differentially Modulate Bone Health and Lipid Metabolism. Calcif Tissue Int 100:20-28
Viant, Mark R; Kurland, Irwin J; Jones, Martin R et al. (2017) How close are we to complete annotation of metabolomes? Curr Opin Chem Biol 36:64-69
Zahalka, Ali H; Arnal-Estapé, Anna; Maryanovich, Maria et al. (2017) Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358:321-326
Jao, Jennifer; Powis, Kathleen M; Kirmse, Brian et al. (2017) Lower mitochondrial DNA and altered mitochondrial fuel metabolism in HIV-exposed uninfected infants in Cameroon. AIDS 31:2475-2481
Bowden, John A; Heckert, Alan; Ulmer, Candice Z et al. (2017) Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. J Lipid Res 58:2275-2288
Seki, Yoshinori; Suzuki, Masako; Guo, Xingyi et al. (2017) In Utero Exposure to a High-Fat Diet Programs Hepatic Hypermethylation and Gene Dysregulation and Development of Metabolic Syndrome in Male Mice. Endocrinology 158:2860-2872
Nie, Wenna; Yan, Leyu; Lee, Yie H et al. (2016) Advanced mass spectrometry-based multi-omics technologies for exploring the pathogenesis of hepatocellular carcinoma. Mass Spectrom Rev 35:331-49
Han, Wenfei; Tellez, Luis A; Niu, Jingjing et al. (2016) Striatal Dopamine Links Gastrointestinal Rerouting to Altered Sweet Appetite. Cell Metab 23:103-12

Showing the most recent 10 out of 546 publications