The mission of the Stable Isotope &Metabolomics Core is to provide guided metabolite and substrate flux determinations in complex in vivo metabolic models in partnership with the Animal Physiology Core. The Stable Isotope &Metabolomics Core provides an array of in vitro metabolic methodologies that augment these in vivo investigations. These services provide investigators with specialized assays to determine substrate flux dynamics and metabolite profiles at the organelle, cellular, tissue and whole body level thereby elucidating the integrative network of disorders in glucose, protein and lipid metabolism. Through these collaborative efforts with the other Cores of the DRTC, the effects of defined pharmacological, dietary, environmental and genetic alterations are thoroughly characterized for their effects on glucose homeostasis, insulin action, and metabolism. The role of candidate molecules in relevant tissues (i.e., neurons, hepatocytes, skeletal muscle, adipocytes and beta cells) that are related to glucose homeostasis can be specifically delineated by thorough and definitive in vivo and in vitro experimentation using a step-by-step guided approach in rodent, and other models. To accomplish these goals, the Stable Isotope &Metabolomics Core will: 1) perform in vivo stable isotope substrate flux assays for the determination of rates of protein synthesis, lipogenesis, peripheral glucose disposal, hepatic glucose recycling, glucose-glycerol cycling and glucose-lactate cycling;2) detennine glycolysis (extracellular acidification rates) and mitochondrial oxygen consumption (mitochondrial respiration) in isolated cells, tissue explants or tissue culture, using Seahorse Biosciences Flux Analyzers, as well as more comprehensive stable isotope flux assessments;3) perform targeted hypothesis driven assessments of plasma and tissue metabolite profiles for key metabolites in the glycolytic/gluconeogenic, pentose phosphate, and tricarboxylic (TCA) cycle pathways, and lipid metabolism, including fatty acid, fatty acyl CoA and fatty acyl camitine profiles;and 4) provide mentorship and protocol development in the use of mass spectrometer based flux and metabolite profiling methods for the evaluation of molecular biochemical targets relevant to the control of glucose and fatty acid homeostasis. All these services are available to investigators new to diabetes research, as well as to investigators working on diabetes-related projects that can be enriched and extended by the use of the expertise and facilities of this core.

Public Health Relevance

The Stable Isotope &Metabolomics Core provides cost effective, high quality resources that facilitate the scientific progress made by a large group of scientists committed to improve our understanding of the integrative physiology of diabetes in order to improve the treatment of patients with diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Comprehensive Center (P60)
Project #
5P60DK020541-36
Application #
8458589
Study Section
Special Emphasis Panel (ZDK1-GRB-2)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
36
Fiscal Year
2013
Total Cost
$228,980
Indirect Cost
$91,040
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Babad, Jeffrey; Ali, Riyasat; Schloss, Jennifer et al. (2016) An HLA-Transgenic Mouse Model of Type 1 Diabetes That Incorporates the Reduced but Not Abolished Thymic Insulin Expression Seen in Patients. J Diabetes Res 2016:7959060
Commissariat, Persis V; Kenowitz, Joslyn R; Trast, Jeniece et al. (2016) Developing a Personal and Social Identity With Type 1 Diabetes During Adolescence: A Hypothesis Generative Study. Qual Health Res 26:672-84
Mera, Paula; Laue, Kathrin; Ferron, Mathieu et al. (2016) Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metab 23:1078-92
Ali, Riyasat; Babad, Jeffrey; Follenzi, Antonia et al. (2016) Genetically modified human CD4(+) T cells can be evaluated in vivo without lethal graft-versus-host disease. Immunology 148:339-51
Edison, Arthur S; Hall, Robert D; Junot, Christophe et al. (2016) The Time Is Right to Focus on Model Organism Metabolomes. Metabolites 6:
Chen, Wei; Melamed, Michal L; Hostetter, Thomas H et al. (2016) Effect of oral sodium bicarbonate on fibroblast growth factor-23 in patients with chronic kidney disease: a pilot study. BMC Nephrol 17:114
Gonzalez, Jeffrey S; Kane, Naomi S; Binko, Deborah H et al. (2016) Tangled Up in Blue: Unraveling the Links Between Emotional Distress and Treatment Adherence in Type 2 Diabetes. Diabetes Care 39:2182-2189
Roshandel, Delnaz; Klein, Ronald; Klein, Barbara E K et al. (2016) New Locus for Skin Intrinsic Fluorescence in Type 1 Diabetes Also Associated With Blood and Skin Glycated Proteins. Diabetes 65:2060-71
Nie, Wenna; Yan, Leyu; Lee, Yie H et al. (2016) Advanced mass spectrometry-based multi-omics technologies for exploring the pathogenesis of hepatocellular carcinoma. Mass Spectrom Rev 35:331-49
Yeh, M-C; Heo, M; Suchday, S et al. (2016) Translation of the Diabetes Prevention Program for diabetes risk reduction in Chinese immigrants in New York City. Diabet Med 33:547-51

Showing the most recent 10 out of 531 publications