The mission of the Hormone Assay Core are to provide cost effective and efficient analyses of a variety of hormones, appropriate methodologies, cell lines and data storage venues to promote the Diabetes research efforts of the Einstein DRTC. Over the past two years, the Core has averaged 30,000 assays annually in support of 34 DRTC investigators. Productivity of the Core has been outstanding with 76 papers published that involved Core usage in the past 2.5 years. In addition, the appropriate physiological secretory function and insulin content of a variety of rodent mouse beta cell lines are characterized prior to supplying them to investigators at Einstein and to other investigator laboratories nationally and internationally. Thus, this Core has functioned as a local and national resource in support of diabetes-related research. The Core utilizies RIA, ELISA, and Luminex-based methodologies that have been established by the Core director and personnel. Data are pemianently archived and the results of assays are made available via a secure website accessible by investigators. These data are encrypted and access to the server is password protected. A charge back system is used to recover costs not covered by the DRTC budget. Education of investigators on the appropriate assay method is the function of the Director, and laboratory personnel instruct fellows and post-docs in the methodologies when appropriate. To accomplish these goals, the Hormone Assay Core will: 1) provide accurate, cost effective assays of a variety of hormones, adipokines and cytokines to DRTC investigators, using appropriate methodologies;2) assess insulin secretion from a series of mouse beta cell lines maintained by the Einstein DRTC for local use and distribution to the scientific community;3) provide an effective data storage and access system for providing results to investigators and monitoring Core use; 4) provide expert advice to DRTC investigators on Core use and education in assay performance and data interpretation;and 5) utilize the Core as a training platform for appropriate young diabetes investigators. Future goals are to enhance assay automation through shared purchase of a robot and bar-code compatible gamma counter, which will be used to enhance semi-automation of procedures. All these sen/ices are available to investigators new to diabetes research, as well as to investigators working on diabetes-related projects that can be enriched and extended by the use of the expertise and facilities of this core.

Public Health Relevance

The Hormone Assay Core provides cost effective, high quality assays that facilitate the scientific progress made by a large group of scientists committed to improve our understanding and treatment of patients with diabetes.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Comprehensive Center (P60)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-2)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albert Einstein College of Medicine
United States
Zip Code
Babad, Jeffrey; Ali, Riyasat; Schloss, Jennifer et al. (2016) An HLA-Transgenic Mouse Model of Type 1 Diabetes That Incorporates the Reduced but Not Abolished Thymic Insulin Expression Seen in Patients. J Diabetes Res 2016:7959060
Commissariat, Persis V; Kenowitz, Joslyn R; Trast, Jeniece et al. (2016) Developing a Personal and Social Identity With Type 1 Diabetes During Adolescence: A Hypothesis Generative Study. Qual Health Res 26:672-84
Mera, Paula; Laue, Kathrin; Ferron, Mathieu et al. (2016) Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metab 23:1078-92
Ali, Riyasat; Babad, Jeffrey; Follenzi, Antonia et al. (2016) Genetically modified human CD4(+) T cells can be evaluated in vivo without lethal graft-versus-host disease. Immunology 148:339-51
Edison, Arthur S; Hall, Robert D; Junot, Christophe et al. (2016) The Time Is Right to Focus on Model Organism Metabolomes. Metabolites 6:
Chen, Wei; Melamed, Michal L; Hostetter, Thomas H et al. (2016) Effect of oral sodium bicarbonate on fibroblast growth factor-23 in patients with chronic kidney disease: a pilot study. BMC Nephrol 17:114
Gonzalez, Jeffrey S; Kane, Naomi S; Binko, Deborah H et al. (2016) Tangled Up in Blue: Unraveling the Links Between Emotional Distress and Treatment Adherence in Type 2 Diabetes. Diabetes Care 39:2182-2189
Roshandel, Delnaz; Klein, Ronald; Klein, Barbara E K et al. (2016) New Locus for Skin Intrinsic Fluorescence in Type 1 Diabetes Also Associated With Blood and Skin Glycated Proteins. Diabetes 65:2060-71
Nie, Wenna; Yan, Leyu; Lee, Yie H et al. (2016) Advanced mass spectrometry-based multi-omics technologies for exploring the pathogenesis of hepatocellular carcinoma. Mass Spectrom Rev 35:331-49
Yeh, M-C; Heo, M; Suchday, S et al. (2016) Translation of the Diabetes Prevention Program for diabetes risk reduction in Chinese immigrants in New York City. Diabet Med 33:547-51

Showing the most recent 10 out of 531 publications