For postlingually deafened adults to receive maximum benefit from a cochlear Implant, they must adapt to a stimulus that is vastly different from the representations of speech stored in their long-term memory. This issue may be particularly relevant for bilateral cochlear implant users, as they must not only adapt to electrical stimulation of one ear, but also to possible asymmetries between ears. Such asymmetries may be exacerbated by the lack of fitting procedures for bilateral implants, as current clinical care recommends fitting each ear separately with no specific procedure to coordinate the implants so that they work best together. The current proposal focuses on this issue, and describes three experiments to Investigate the optimization of bilateral cochlear Implant fittings, and the effects of between-ear asymmetries. Experiment 1 will test the hypothesis that different procedures for pitch-matching across the two electrode arrays will result in similar adjustments to the frequency table. Experiments 2 will test the hypotheses that pitch- and loudness-matching procedures will enhance speech perception and sound localization abilities in experienced bilateral cochlear implant users. Experiment 3. will test the hypothesis that between-electrode asymmetries can hinder speech understanding, and that the deterioration in performance is exacerbated by stimulation strategies thought to induce narrower patterns of electrical activation.

Public Health Relevance

(See Inslructions); These experiments will provide valuable public health information with regard to patient outcomes with bilateral cochlear implants, particularly with regard to optimizing their fitting procedures. Furthermore, they wil! employ innovating techniques to do so Which wlll likely have widespread application for optimizing of cochlear implant fitting, and reducing the time patients require to fully adapt to their cochlear implant(5),

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Research Transition Award (R00)
Project #
Application #
Study Section
Special Emphasis Panel (NSS)
Program Officer
Donahue, Amy
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
New York University
Schools of Medicine
New York
United States
Zip Code
Fitzgerald, Matthew B; Kan, Alan; Goupell, Matthew J (2015) Bilateral Loudness Balancing and Distorted Spatial Perception in Recipients of Bilateral Cochlear Implants. Ear Hear 36:e225-36
Fitzgerald, Matthew B; Sagi, Elad; Morbiwala, Tasnim A et al. (2013) Feasibility of real-time selection of frequency tables in an acoustic simulation of a cochlear implant. Ear Hear 34:763-72
Fitzgerald, Matthew B; Green, Janet E; Fang, Yixin et al. (2013) Factors influencing consistent device use in pediatric recipients of bilateral cochlear implants. Cochlear Implants Int 14:257-65
Svirsky, Mario A; Fitzgerald, Matthew B; Neuman, Arlene et al. (2012) Current and planned cochlear implant research at New York University Laboratory for Translational Auditory Research. J Am Acad Audiol 23:422-37
Fitzgerald, Matthew B; Wright, Beverly A (2011) Perceptual learning and generalization resulting from training on an auditory amplitude-modulation detection task. J Acoust Soc Am 129:898-906
Lieberman, Seth M; Jacobs, Joseph B; Lebowitz, Richard A et al. (2011) Measurement of mycotoxins in patients with chronic rhinosinusitis. Otolaryngol Head Neck Surg 145:327-9
Jethanamest, Daniel; Tan, Chin-Tuan; Fitzgerald, Matthew B et al. (2010) A new software tool to optimize frequency table selection for cochlear implants. Otol Neurotol 31:1242-7
Wright, Beverly A; Sabin, Andrew T; Zhang, Yuxuan et al. (2010) Enhancing perceptual learning by combining practice with periods of additional sensory stimulation. J Neurosci 30:12868-77