The adipose-derived secretory factor adiponectin promotes an increase in ceramide catabolism, which is dependent on adiponectin receptors 1 and 2. The receptor-associated ceramidase activity promotes ceramide degradation and generation of sphingosine 1-phosphate (S1P), offering ??cells protection from caspase-8- dependent pro-apoptotic insults. The simple 2-step conversion of ceramide to S1P and starkly opposing roles of the two lipids on cell survival and proliferation has led us and others to postulate the existence of a cellular rheostat governed by these two lipids. As adiponectin promotes improvements in whole body metabolism, it remains unclear whether the local actions of adiponectin within the ??cell elicit these protective effects, or if improvements in the circulating metabolic milieu mediate these protective responses. Understanding this protective mechanism is critical for developing strategies to maintain healthy populations of ?-cells in individuals. I hypothesize that adiponectin receptors promote ?-cell survival and proliferation by governing the ceramide:S1P ratio. Here, I will evaluate the effects of ??cell-specific overexpression of adiponectin receptors or acid ceramidase (a presumed positive control) on the maintenance of functional ??cell mass. Moreover, I will examine the contributions of S1P-mediated protective effects on ?-cell survival in mice lacking S1P receptors (1, 2 or 3) or mice overexpressing the S1P degrading enzyme S1P lyase. To do that, I will take advantage of the ?PANIC-ATTAC? transgenic mouse, which offers inducible, titratable, ??cell specific apoptosis. Since I functionally inactivate the ??cells through mild apoptosis as opposed to necrosis, I reduce the pro-inflammatory component of ??cell death, and thus ??cell mass can be reconstituted upon cessation of dimerizer treatment. Collectively, I will be able to evaluate the effects of adiponectin, adiponectin receptors, acid ceramidase, and S1P on: a) the adiponectin-mediated anti-apoptotic actions in the ?-cell, and b) adiponectin's ability to enhance the regenerative potential of functional ??cell mass. I will also determine if ?-cell-specific overexpression of adiponectin receptor 1, adiponectin receptor 2, or acid ceramidase (AC) is sufficient to maintain functional islet mass using the ob/ob mouse as a model of diabetic ?-cell failure. These studies will hopefully suggest novel therapeutic avenues for the treatment and prevention of diabetes by promoting ?-cell functionality, and by promoting regenerative processes within the ?-cell population.

Public Health Relevance

Understanding the protective mechanisms by which adiponectin maintains functional ?-cell mass is critical for developing strategies to maintain healthy populations of ?-cells in individuals. These studies may suggest novel therapies for the treatment and prevention of diabetes by promoting functional ?-cell mass, and potential regenerative processes within the ?-cell. Moreover, they will enhance the general understanding of factors governing cell survival and proliferation, which has implications for a diverse array of diseases and treatment modalities influenced by cell death.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Transition Award (R00)
Project #
5R00DK094973-04
Application #
8914600
Study Section
Special Emphasis Panel (NSS)
Program Officer
Sato, Sheryl M
Project Start
2014-08-20
Project End
2017-07-31
Budget Start
2015-08-01
Budget End
2016-07-31
Support Year
4
Fiscal Year
2015
Total Cost
$244,203
Indirect Cost
$90,616
Name
University of Texas Sw Medical Center Dallas
Department
Type
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Amoasii, Leonela; Olson, Eric N; Bassel-Duby, Rhonda (2018) Control of Muscle Metabolism by the Mediator Complex. Cold Spring Harb Perspect Med 8:
Shao, Mengle; Vishvanath, Lavanya; Busbuso, Napoleon C et al. (2018) De novo adipocyte differentiation from Pdgfr?+ preadipocytes protects against pathologic visceral adipose expansion in obesity. Nat Commun 9:890
Xia, Jonathan Y; Sun, Kai; Hepler, Chelsea et al. (2018) Acute loss of adipose tissue-derived adiponectin triggers immediate metabolic deterioration in mice. Diabetologia 61:932-941
Sharma, Ankit X; Holland, William L (2017) Adiponectin and its Hydrolase-Activated Receptors. J Nat Sci 3:
Holland, William L; Xia, Jonathan Y; Johnson, Joshua A et al. (2017) Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol Metab 6:267-275
Hepler, Chelsea; Shao, Mengle; Xia, Jonathan Y et al. (2017) Directing visceral white adipocyte precursors to a thermogenic adipocyte fate improves insulin sensitivity in obese mice. Elife 6:
Taylor, Oliver J; Thatcher, Mikayla O; Carr, Sheryl T et al. (2017) High-Mobility Group Box 1 Disrupts Metabolic Function with Cigarette Smoke Exposure in a Ceramide-Dependent Manner. Int J Mol Sci 18:
Dean, E Danielle; Unger, Roger H; Holland, William L (2017) Glucagon antagonism in islet cell proliferation. Proc Natl Acad Sci U S A 114:3006-3008
Fujikawa, Teppei; Castorena, Carlos M; Pearson, Mackenzie et al. (2016) SF-1 expression in the hypothalamus is required for beneficial metabolic effects of exercise. Elife 5:
Pearson, Mackenzie J; Unger, Roger H; Holland, William L (2016) Clinical Trials, Triumphs, and Tribulations of Glucagon Receptor Antagonists. Diabetes Care 39:1075-7

Showing the most recent 10 out of 22 publications