Maternal homeostasis and the fetal milieu are highly susceptible to a variety of external or environmental exposures during gestation (e.g. malnutrition, toxicant exposure). Any dysfunction within the coordinated exchange of nutrients and waste during gestation could create a hostile gestational environment (HGE), leading to devastating fetal consequences. It has been hypothesized that fetal development within a HGE could be an underappreciated etiology for adult disease and/or sensitivity. Mitochondrial inefficiency has been theorized as one mechanistic link between development within a HGE and the development of adult disease. The continued development of engineered nanomaterials (ENM) (<100 nm in one dimension) coupled with their increasing use in biomedical and commercial products have given rise to concerns over potential exposure and resulting human health effects. Recent evidence from this laboratory suggests that inhalation of titanium dioxide nanoparticles (TiO2) by pregnant rats can lead to the development of a HGE, impairing maternal and fetal microvascular function. Existing evidence from this laboratory indicates that inhaled ENM (multi-walled carbon nanotubes (MWCNT), TiO2, and CeO2) can impair coronary microvascular function in healthy male rats associated with decreased nitric oxide (NO) bioavailability. Further, recent preliminary findings from the Candidate provide evidence of mitochondrial inefficiencies and fetal microvascular dysfunction that persist systemically into adulthood. The present study proposes exposing pregnant rats to MWCNT via inhalation in order to: (1) identify mitochondrial health as a high throughput predictive screening test, (2) ascertain the toxicokinetic critical windows of exposure associated with adverse effects of gestational ENM exposure, (3) determine if significant maternal, fetal, and adult progeny systemic microvascular dysfunction arises from the creation of HGE stemming from MWCNT exposure, and (4) provide the necessary skills in mitochondrial functional assessment and career-mentoring for an independent and productive research career. The working hypothesis is that MWCNT exposure creates a hostile gestational environment leading to the development of fetal mitochondrial insufficiencies in an attempt to adapt to the unfavorable intrauterine milieu. This study is innovative because it challenges the long-standing status quo of nanotechnology with the use of pregnant rats to determine the mechanistic microvascular alterations of ENM exposure to current and future generations. This study is forward thinking as it establishes the conceptual framework that predisposition to adult disease (or fetal programming) could be due to in utero nanomaterial exposure. This study is significant because it will yield important toxicokinetic and mechanistic data, permitting the development of evidence-based strategies and regulatory policy for the safe production and prudent use of ENM in consumer products, especially relevant to women of childbearing years; overall, allowing the true potential of nanotechnology to be fully realized.

Public Health Relevance

One of the most unique and complicated physiological relationships occurs during pregnancy. However, the cardiovascular consequences associated with maternal nanomaterial (ENM) exposure to the mother, fetus, and adult offspring have yet to be revealed.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Transition Award (R00)
Project #
5R00ES024783-05
Application #
9638552
Study Section
Special Emphasis Panel (NSS)
Program Officer
Nadadur, Srikanth
Project Start
2017-02-01
Project End
2020-01-31
Budget Start
2019-02-01
Budget End
2020-01-31
Support Year
5
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Rutgers University
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
001912864
City
Piscataway
State
NJ
Country
United States
Zip Code
08854
Stapleton, P A; McBride, C R; Yi, J et al. (2018) Estrous cycle-dependent modulation of in vivo microvascular dysfunction after nanomaterial inhalation. Reprod Toxicol 78:20-28
Fournier, S B; D'Errico, J N; Stapleton, P A (2018) Engineered nanomaterial applications in perinatal therapeutics. Pharmacol Res 130:36-43
Stapleton, P A; Hathaway, Q A; Nichols, C E et al. (2018) Maternal engineered nanomaterial inhalation during gestation alters the fetal transcriptome. Part Fibre Toxicol 15:3
D'Errico, J N; Stapleton, P A (2018) Developmental Onset of Cardiovascular Disease - Could the Proof be in the Placenta? Microcirculation :e12526
Abukabda, Alaeddin B; Stapleton, Phoebe A; McBride, Carroll R et al. (2017) Heterogeneous Vascular Bed Responses to Pulmonary Titanium Dioxide Nanoparticle Exposure. Front Cardiovasc Med 4:33
Hathaway, Quincy A; Nichols, Cody E; Shepherd, Danielle L et al. (2017) Maternal-engineered nanomaterial exposure disrupts progeny cardiac function and bioenergetics. Am J Physiol Heart Circ Physiol 312:H446-H458