The long-term objective ofthis project is to contribute to our understanding ofthe mechanisms of visual representation by cortical networks. Neuronal gain, measured as the continuous slope ofthe relationship between stimulus input and cellular outpiut, is a measure of neuronal sensitivity to the stimulus and a defining element ofthe contribution of single neurons to network operations. Previous work has identified a role for network-driven synaptic activity in modulating the input-output gain of cortical neurons. In addition, synchroiQ'between local network mputs may determine the magnitude ofthe impact of network activity on neuronal gain. Previous studies have also suggested that gain modulation and population synchrony play roles in mediating visual perception. However, even at the earliest stages of cortical visual processing, die relationship between individual neurons and the surrounding local network is poorly understood. The main goals ofthe work proposed here are therefore 1) to determine the relationship betweoi cellular mechanisms of contrast gain control and networic synchrony and 2) to examine tiie interacti(H) between population synchrony and visual perception. To tiiat end, the first Aim focused on many simultaneous recordings of cortical neurons during presentation of stimuli with varying prqierties.
The second Aim will use a behavioral task in which awake bdiaving animals discriminate between visual stimuli of vaiying contrast In one series of expraiments, tiiis task will be combined witii population recordings of neimms that make up local netwoiks in primary visual cortex. The results of these eiqieriments are expected to provide novel insights into the relation^p between tiie temporal dynamics of population activity and cellular mechanisms of gain control. In addition, they will graierate a better understanding of tiie role of synchronous cortical networic activity in visual perception.

Public Health Relevance

The overall objective of this research is to characterize the pattems of activity at the eariy stages of visual processing in the tuain in response to varying stimulus contexts and relate those pattenis of activity to stimulus sensitivity and visual perception. Our continuing goal is to advance understanding of global functions ofthe central nen/ous system in perceptual processing.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Transition Award (R00)
Project #
5R00EY018407-04
Application #
8060553
Study Section
Special Emphasis Panel (NSS)
Program Officer
Steinmetz, Michael A
Project Start
2010-04-01
Project End
2013-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
4
Fiscal Year
2011
Total Cost
$239,040
Indirect Cost
Name
Yale University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Vinck, Martin; Batista-Brito, Renata; Knoblich, Ulf et al. (2015) Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86:740-54
McGinley, Matthew J; Vinck, Martin; Reimer, Jacob et al. (2015) Waking State: Rapid Variations Modulate Neural and Behavioral Responses. Neuron 87:1143-1161
Cardin, Jessica A (2012) Dissecting local circuits in vivo: integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity. J Physiol Paris 106:104-11