Every cell division requires the faithful duplication of genetic material from mother cell to daughter cell. Defects in the proper execution of the DNA replication program can directly result in the genome instability that is a hallmark of nearly all cancer cells. Proper genome duplication requires the delicate balance of the initiation and elongation phases of DNA replication. In fact, it has recently been demonstrated that the breakdown of replication forks within large genomic regions incapable of initiating DNA replication is responsible for the generation of chromosomal fragile sites, or sites in the genome susceptible to breakage. Our recent work in Drosophila has identified regions of the genome that are selectively repressed for DNA replication in a tissue-specific manner, providing a framework to understand the causes of tissue-specific genome instability. Furthermore, this repression is due to inhibition of replication fork progression through regions of the genome that are unable to initiate DNA replication. A single chromatin protein has been shown to mediate this tissue-specific repression, emphasizing the effect of chromatin structure on replication fork progression and stability. Therefore, we have now established a model system to understand how developmental changes in the DNA replication program ultimately affect genome stability and lead to chromosome fragile sites. Thus, the major goals of this proposal are to understand how chromatin structure influences replication fork progression and stability, and to identify components of active replication forks that mediate their progression through diverse chromatin structures.

Public Health Relevance

Within the cell, DNA is packaged together with proteins in order to fit almost three meters of DNA into the nucleus of a single cell. But, this DNA-protein complex, termed chromatin, presents challenges to the proteins that must copy DNA. Using the fruit fly Drosophila melanogaster as a model organism, our goal is to understand how the structure of chromatin influences the process of genome duplication and ultimately, how this can lead to changes in gene copy number seen in cancer cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Transition Award (R00)
Project #
5R00GM104151-04
Application #
9132799
Study Section
Special Emphasis Panel (NSS)
Program Officer
Reddy, Michael K
Project Start
2013-09-01
Project End
2018-08-31
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
4
Fiscal Year
2016
Total Cost
$245,557
Indirect Cost
$89,151
Name
Vanderbilt University Medical Center
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37240
Munden, Alexander; Rong, Zhan; Sun, Amanda et al. (2018) Rif1 inhibits replication fork progression and controls DNA copy number in Drosophila. Elife 7: