One ofthe most puzzling phenomena in modern physiology is the existence of fractal patterns in a wide range of physiological systems (i.e., the structure of fluctuations are similar at different time scales), which challenges the traditional theory of homeostasis of maintaining physiologic constancy The physiological importance of fractal control is demonstrated In numerous studies and exemplified by reduced fractal cardiac and activity controls with aging and under pathological conditions, and most importantly, by the predictive value of reduced fractal cardiac control for decreased survival.. Despite the clear importance of fractal phenomena, to date, no underlying mechanism has been established for fractal control in any neural or physiological system. The Pi's recent studies indicate that the circadian system is critically involved in the fractal control of motor activity at multiple time scales. The proposal will formally assess the physiological significance and the neurobiological basis ofthe fractal regulatory function ofthe circadian system. The primary goal is to identify the neuronal nodes and pathways through which the circadian system imparts fractal activity control. During the previous 2-year mentored phase, PI and his colleagues have completed the analyses to reveal the effects of changes in the central circadian system on fractal activity control (the originally proposed Specific Aim 1). New results provided first direct evidence that dysfunction ofthe central circadian pacemaker leads to reduced fractal activity control in humans. The subsequent three years of the independent research phase will allow the PI to achieve the main research goal and help establish the PI as an independent researcher in the field.
The specific aims are 1) to determine the effects of circadian misalignment on fractal activity control;and 2) to identify and validate neuronal node(s) in the activity control network and their interactions that contribute to fractal activity control. Achieving these aims will provide the neurophysiologic basis forthe first model of fractal control. Better understanding ofthe neuronal circuitry involving in circadian and activity regulation ought to provide useful guidance for improved diagnosis and treatment of circadian-related sleep and behavioral disturbances.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Transition Award (R00)
Project #
4R00HL102241-03
Application #
8431501
Study Section
Special Emphasis Panel (NSS)
Program Officer
Laposky, Aaron D
Project Start
2010-04-01
Project End
2015-03-31
Budget Start
2012-08-13
Budget End
2013-03-31
Support Year
3
Fiscal Year
2012
Total Cost
$249,000
Indirect Cost
$51,661
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Pittman-Polletta, Benjamin; Hu, Kun; Kocsis, Bernat (2018) Subunit-specific NMDAR antagonism dissociates schizophrenia subtype-relevant oscillopathies associated with frontal hypofunction and hippocampal hyperfunction. Sci Rep 8:11588
Li, Peng; Yu, Lei; Lim, Andrew S P et al. (2018) Fractal regulation and incident Alzheimer's disease in elderly individuals. Alzheimers Dement 14:1114-1125
Lo, M-T; Bandin, C; Yang, H-W et al. (2018) CLOCK 3111T/C genetic variant influences the daily rhythm of autonomic nervous function: relevance to body weight control. Int J Obes (Lond) 42:190-197
Li, Peng; Morris, Christopher J; Patxot, Melissa et al. (2017) Reduced Tolerance to Night Shift in Chronic Shift Workers: Insight From Fractal Regulation. Sleep 40:
Morris, Christopher J; Purvis, Taylor E; Mistretta, Joseph et al. (2017) Circadian Misalignment Increases C-Reactive Protein and Blood Pressure in Chronic Shift Workers. J Biol Rhythms 32:154-164
Li, Peng; To, Tommy; Chiang, Wei-Yin et al. (2017) Fractal Regulation in Temporal Activity Fluctuations: A Biomarker for Circadian Control and Beyond. JSM Biomark 3:
Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin et al. (2016) Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation. Front Physiol 7:174
Chen, Michael C; Chiang, Wei-Yin; Yugay, Tatiana et al. (2016) Anterior Insula Regulates Multiscale Temporal Organization of Sleep and Wake Activity. J Biol Rhythms 31:182-93
Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun (2016) Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals. Physica A 454:143-150
Yeh, Chien-Hung; Hung, Chi-Yao; Wang, Yung-Hung et al. (2016) Novel application of a Wii remote to measure spasticity with the pendulum test: Proof of concept. Gait Posture 43:70-5

Showing the most recent 10 out of 28 publications