The proposal outlines an integrated research and career development plan for Yun Fang, Ph.D to complete postdoctoral training in the laboratory of Dr. Peter Davies and transition to an independent academic position by establishing a multi-disciplinary research program in cardiovascular pathophysiology. The PI is currently an American Heart Association Fellow who is trained in the fields of molecular biology, bioengineering, and vascular biology. During the 2 year mentored period, the PI will receive additional academic guidance from the mentor and the advisory committee at the University of Pennsylvania. The career development plan is designed to equip the PI with necessary knowledge and skills in biomedical research for a successful transition as an independent academician, leading to a RO1 as the R00 phase of the work progresses. The overall research goal is to determine the role of microRNA-10a (miR-10a) in mediating endothelial phenotypes in relation to the initiation and development of atherosclerosis. MicroRNA-mediated post-transcriptional regulation is poorly understood in arterial biology and pathology. Preliminary studies conducted by the K99 PI demonstrate that differential topographic expression of miR-10a in distinct arterial sites significantly contributes to the endothelial heterogeneity associated with susceptibility to atherosclerosis. Notably, endothelial miR-10a is significantly suppressed in vivo in athero-susceptible regions exposed to disturbed blood flow in a large animal model. Further functional genomics and biochemical analyses demonstrated that miR-10a promotes the athero-protective phenotype in endothelial cells by suppressing NF-B-mediated inflammation (PNAS in press). The research proposal tests the overall hypothesis that flow and/or hypercholesterolemia-sensitive miR-10a dynamically modulates endothelial phenotypes in the initiation and progression of atherosclerosis.
Aim 1 will test the hypothesis that athero-protective miR-10a suppresses endothelial inflammation and Endoplasmic Reticulum stress (ER stress) by direct inhibition of a cohort of positive NF-B and Unfolded Protein Response (UPR) responsive molecules.
Aim 2 will test the hypothesis that athero- relevant hemodynamic force regulates mechano-sensitive transcription factors, leading to differential control of endothelial miR-10a biogenesis at athero-susceptible and athero-protected regions in vivo.
And Aim 3 will develop a transgenic mouse model that exhibits inducible expression of endothelial miR-10a to demonstrate the causality of endothelial miR-10a expression and atherosclerosis, thereby testing in vivo the hypothesis that athero-protective miR-10a inhibits endothelial inflammation and ER stress, alleviating atherosclerotic burden. The goal will be achieved by integrating system biology and molecular analysis in both in vitro and in vivo systems, leading to mechanistic understandings of the down-stream gene networks and up-stream regulators of endothelial miR-10a with respect to atherosclerosis.

Public Health Relevance

Atherosclerosis causes most cardiovascular diseases such as heart attack and stroke. The plaques develop in predictable sites of arteries which are susceptible to disease. The sites have unusual blood flow which affects the endothelial cells lining the artery and predisposes them to lesions. My studies analyze the regulatory role of small nucleic acids called microRNAs in cells in relation to atherosusceptibiity and blood flow. We hope to define microRNA?related targets for therapeutic intervention in cardiovascular disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Transition Award (R00)
Project #
5R00HL103789-05
Application #
8837672
Study Section
Special Emphasis Panel (NSS)
Program Officer
Liu, Lijuan
Project Start
2013-04-18
Project End
2017-03-31
Budget Start
2015-04-01
Budget End
2017-03-31
Support Year
5
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Wu, David; Huang, Ru-Ting; Hamanaka, Robert B et al. (2017) HIF-1? is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium. Elife 6:
Mack, Julia J; Mosqueiro, Thiago S; Archer, Brian J et al. (2017) NOTCH1 is a mechanosensor in adult arteries. Nat Commun 8:1620
Huang, Ru-Ting; Wu, David; Meliton, Angelo et al. (2017) Experimental Lung Injury Reduces Krüppel-like Factor 2 to Increase Endothelial Permeability via Regulation of RAPGEF3-Rac1 Signaling. Am J Respir Crit Care Med 195:639-651
Oh, Myung-Jin; Zhang, Chongxu; LeMaster, Elizabeth et al. (2016) Oxidized LDL signals through Rho-GTPase to induce endothelial cell stiffening and promote capillary formation. J Lipid Res 57:791-808
Chung, Eun Ji; Mlinar, Laurie B; Nord, Kathryn et al. (2015) Monocyte-targeting supramolecular micellar assemblies: a molecular diagnostic tool for atherosclerosis. Adv Healthc Mater 4:367-76
Wu, Congqing; Huang, Ru-Ting; Kuo, Cheng-Hsiang et al. (2015) Mechanosensitive PPAP2B Regulates Endothelial Responses to Atherorelevant Hemodynamic Forces. Circ Res 117:e41-e53
Kuo, Cheng-Hsiang; Leon, Lorraine; Chung, Eun Ji et al. (2014) Inhibition of atherosclerosis-promoting microRNAs via targeted polyelectrolyte complex micelles. J Mater Chem B 2:8142-8153
Fang, Yun; Davies, Peter F (2012) Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 32:979-87
Davies, Peter F; Civelek, Mete; Fang, Yun et al. (2010) Endothelial heterogeneity associated with regional athero-susceptibility and adaptation to disturbed blood flow in vivo. Semin Thromb Hemost 36:265-75