Synapse remodeling is the process of forming and eliminating synapses to reorganize the existing brain circuitry, and is indispensable for establishing and maintaining the integrity of the nervous system. Synapses are constantly remodeled throughout the lifetime of an animal. Remodeling peaks in the juvenile nervous system, levels off throughout adulthood, and declines with senescence. The long-term goal of my research is to identify the signaling pathways and molecular machinery that mediate synapse remodeling. This will help us to understand how synapses are formed and eliminated at the right time and right place, and provide fundamental information towards our ultimate goal of understanding and treating numerous neurological diseases and mental disorders. To approach analysis of synapse remodeling at the molecular level, it is informative to begin with a simple invertebrate model. In C. elegans, synapse remodeling occurs in a reliable and predictable manner during development. At the end of the first larval stage, 6 motor neurons reverse their axon-dendrite polarity, disassemble existing synapses, and form new ones in a distant location. This simple rewiring process provides an excellent model system that is accessible to both molecular manipulation and in vivo optical observation. The objective of my proposed research is to investigate the molecular pathways defining the timing of synapse remodeling and to identify new genes involved in switching the identity ofthe synapses. This proposal includes the following aims: first, I will investigate temporal regulation of synapse remodeling, testing the hypothesis that genes responsible for controlling the sequence of developmental events (heterochronic genes) regulate synapse remodeling. Second, I will combine data from microarray analysis, a RNAi screen and a forword genetic screen to identify new factors required for synapse remodeling. Finally, a novel quantitative imaging analysis approach will be used to determine spatial regulation ofthe ubiquitin-proteasome system mediating degradation of synaptic components during synapse remodeling. Together, the experiments outlined in this proposal will provide a mechanistic understanding of svnapse remodelina and its regulation.

Public Health Relevance

Malfunction of synapse remodeling has been suggested as a cause for neurological and mental disorders, such as schizophrenia. This project aims to understand molecular mechanisms of synapse remodeling, which may promote future therapeutic intervention for treatment of mental disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Transition Award (R00)
Project #
4R00MH085039-03
Application #
8309585
Study Section
Special Emphasis Panel (NSS)
Program Officer
Asanuma, Chiiko
Project Start
2011-08-22
Project End
2014-06-30
Budget Start
2011-08-22
Budget End
2012-06-30
Support Year
3
Fiscal Year
2011
Total Cost
$248,999
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Dong, Yongming; Gou, Yueyang; Li, Yi et al. (2015) Synaptojanin cooperates in vivo with endophilin through an unexpected mechanism. Elife 4:
Poudel, Kumud R; Bai, Jihong (2014) Synaptic vesicle morphology: a case of protein sorting? Curr Opin Cell Biol 26:28-33
Wragg, Rachel T; Snead, David; Dong, Yongming et al. (2013) Synaptic vesicles position complexin to block spontaneous fusion. Neuron 77:323-34
Thompson-Peer, Katherine L; Bai, Jihong; Hu, Zhitao et al. (2012) HBL-1 patterns synaptic remodeling in C. elegans. Neuron 73:453-65