Itch, also known as pruritus, is defined as the unpleasant sensation that elicits the desire or reflex to scratch. Persistent itching is an important component of many cutaneous diseases or system disorders such as contact dermatitis, chronic renal insufficiency and cholestatic liver diseases. The chronic itching can be very devastating and significantly affect the patients? quality of life. Since the molecular and cellular mechanisms of itch sensation are largely unknown, there are only limited treatments for most of the patients. Recent studies have shown that members of the Mrgprs family serve as new itch receptors mediating the itch sensation elicited by multiple pruritogens. In this proposal, I will use molecular, genetic, behavioral and pharmacological approaches to investigate the role of Mrgprs in mediating different types of itch sensation. This proposal consists of 3 specific aims.
Specific aim 1 will determine whether Mrgprs are involved in mosquito bite-induced itch. In this aim, I will isolate the pruriceptive component in mosquito saliva and test the hypothesis that it activates Mrgprs directly.
Specific aim 2 will test whether antagonizing Mrgprs has an antipruritic effect in chronic itch conditions. For this purpose, I have established a humanized mouse itch model. I will use this model to examine whether the treatment with Mrgprs antagonist can block the chronic itch sensation.
Specific aim 3 will test the idea that Mrgprs not only mediate the itch sensation in the skin, but also in the airway. Successful completion of the proposed studies will provide insight into the periphery mechanisms underlying itch sensation and new therapeutic strategies to treat chronic itch.

Public Health Relevance

Itch sensation is the unpleasant sensation that is always associated with cutaneous or systemic disorders. The proposed study here aims to reveal the molecular and cellular mechanisms of different types of itch sensation. Insights from this study will be useful for guiding future anti-itch therapeutic approaches.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Transition Award (R00)
Project #
4R00NS087088-03
Application #
9233224
Study Section
Special Emphasis Panel (NSS)
Program Officer
Gnadt, James W
Project Start
2016-04-01
Project End
2019-03-31
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Georgia Institute of Technology
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
097394084
City
Atlanta
State
GA
Country
United States
Zip Code
30318
Han, Liang; Limjunyawong, Nathachit; Ru, Fei et al. (2018) Mrgprs on vagal sensory neurons contribute to bronchoconstriction and airway hyper-responsiveness. Nat Neurosci 21:324-328
Zhu, Yuyan; Hanson, Claire E; Liu, Qin et al. (2017) Mrgprs activation is required for chronic itch conditions in mice. Itch (Phila) 2:
Li, Zhe; Tseng, Pang-Yen; Tiwari, Vinod et al. (2017) Targeting human Mas-related G protein-coupled receptor X1 to inhibit persistent pain. Proc Natl Acad Sci U S A 114:E1996-E2005
Chang, Amy Y; Mann, Tracy S; McFawn, Peter K et al. (2016) Investigating the role of MRGPRC11 and capsaicin-sensitive afferent nerves in the anti-influenza effects exerted by SLIGRL-amide in murine airways. Respir Res 17:62
Zaccone, Eric J; Lieu, TinaMarie; Muroi, Yukiko et al. (2016) Parainfluenza 3-Induced Cough Hypersensitivity in the Guinea Pig Airways. PLoS One 11:e0155526