Autophagy is a genetically programmed, evolutionarily conserved process that degrades long-lived cellular proteins and damaged organelles, including mitochondria, as a critical cell survival mechanism in response to stress. We recently reported that ethanol induces autophagy, which reduces ethanol-induced liver injury (Ding et al., 2010a). This is an important finding because alcohol abuse is a major cause of liver disease and a major health problem in the United States. Oxidative stress and mitochondrial damage play important roles in alcohol-induced hepatotoxicity. Cells may protect themselves by removing damaged mitochondria by mechanisms such as autophagy. Therefore modulating the autophagy process could offer new therapeutic treatments for alcoholic liver diseases. However, the mechanisms by which ethanol induces autophagy and how autophagy protects against ethanol-induced liver pathogenesis are not clear. Without such understanding, the potential to ultimately use autophagy in the treatment of alcohol-related liver disease will be limited. Our preliminary studies suggest that the forkhead transcription factor FoxO3a could play a major role in ethanol- induced autophagy. Therefore, the central hypothesis is that ethanol induces autophagy by activating FoxO3a, and autophagic removal of ethanol-induced damaged mitochondria is crucial to protect against ethanol- induced liver pathogenesis. To examine our hypothesis, three specific aims are proposed: 1) determine the mechanisms by which ethanol activates FoxO3a in hepatocytes, 2) determine how ethanol-activated FoxO3a induces autophagy in hepatocytes, and 3) determine the mechanisms by which removal of damaged mitochondria protects against ethanol-induced hepatotoxicity. The research proposed in this application is innovative in the concept that ethanol can activate autophagy as a protective mechanism against its known detrimental effects on the liver. Moreover, we will utilize novel genetic animal models such as GFP-LC3 transgenic and Atg5 liver-specific knockout mice to specifically study the role of autophagy in alcohol-induced liver injury. Furthermore, it focuses on the role of FoxO3a-mediated autophagy pathway in alcoholic liver disease, which has not been studied. The proposed research is significant because the results from this study will lead to the understanding of mechanisms and roles of autophagy in alcohol-induced liver pathogenesis. Ultimately, such knowledge has the potential of offering novel therapeutic approaches for treating alcoholic liver pathogenesis by modulating autophagy.

Public Health Relevance

Alcohol abuse and consumption are major causes of liver disease and is a major health problem in the United States and around the world. Autophagy has been shown to be able to regulate mitochondria homeostasis and cell death, which are important in alcoholic liver disease. Elucidating the molecular mechanisms of how autophagy, mitochondria homeostasis and cell death are integrated in alcoholic liver disease will help to generate novel therapeutic strategies.

National Institute of Health (NIH)
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Research Project (R01)
Project #
Application #
Study Section
Hepatobiliary Pathophysiology Study Section (HBPP)
Program Officer
Gao, Peter
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kansas
Schools of Medicine
Kansas City
United States
Zip Code
Wang, Shaogui; Ding, Wen-Xing (2017) A small RNA in neutrophils protects against acute-on-chronic alcoholic liver injury. Gut 66:565-566
New, Jacob; Arnold, Levi; Ananth, Megha et al. (2017) Secretory Autophagy in Cancer-Associated Fibroblasts Promotes Head and Neck Cancer Progression and Offers a Novel Therapeutic Target. Cancer Res 77:6679-6691
Li, Yuan; Ding, Wen-Xing (2017) Does Genetic Loss of Immunoglobulin A Have No Impact on Alcoholic Liver Disease? Alcohol Clin Exp Res 41:20-22
Williams, Jessica A; Zhao, Katrina; Jin, Shengkan et al. (2017) New methods for monitoring mitochondrial biogenesis and mitophagy in vitro and in vivo. Exp Biol Med (Maywood) 242:781-787
Rogers, Robert S; Tungtur, Sudheer; Tanaka, Tomohiro et al. (2017) Impaired Mitophagy Plays a Role in Denervation of Neuromuscular Junctions in ALS Mice. Front Neurosci 11:473
Li, Yuan; Ding, Wen-Xing (2017) Impaired Rab7 and Dynamin2 Block Fat Turnover by Autophagy in Alcoholic Fatty Livers. Hepatol Commun 1:473-476
Wang, Shaogui; Wang, Hua; Ding, Wen-Xing (2017) Pyroptosis, a Novel Player for Alcoholic Hepatitis? Hepatology :
Li, Yuan; Ding, Wen-Xing (2017) Adipose tissue autophagy and homeostasis in alcohol-induced liver injury. Liver Res 1:54-62
Ding, Wen-Xing; Jaeschke, Hartmut (2016) Autophagy in macrophages regulates the inflammasome and protects against liver injury. J Hepatol 64:16-8
Ni, Hong-Min; McGill, Mitchell R; Chao, Xiaojuan et al. (2016) Removal of acetaminophen protein adducts by autophagy protects against acetaminophen-induced liver injury in mice. J Hepatol 65:354-62

Showing the most recent 10 out of 48 publications