In utero exposure to alcohol can have major deleterious effects as documented for """"""""fetal alcohol syndrome (FAS)"""""""" and more recently and broadly as """"""""fetal alcohol spectrum disorders (FASD)."""""""" These disorders are associated with a range of debilitating neurodevelopmental and psychiatric problems after birth. Myriad molecular and cellular defects have been associated with fetal brain exposure to ethanol, which generally lack common, underlying mechanisms. This proposal will examine a newly identified, somatic change in the genomes of central nervous system (CNS) cells produced by fetal ethanol exposure that could help to provide a common mechanistic foundation: mosaic aneuploidies. These cells show somatically produced chromosomal gains and/or losses, constituting an inherent, if surprising element of normal brain organization. Constitutive aneuploidies (where all cells have the same form of aneuploidy) have clear consequences for cellular dysfunction in cancers, and deleterious behavioral consequences as observed in Down Syndrome, suggesting that deviations from the normal mosaic aneuploidy states could contribute to the range of neural deficits seen in FASD. Here, we will test the hypothesis that identifiable changes in neural mosaic aneuploidies represent a common endpoint of prenatal exposure to alcohol.
Three aims will be pursued over the next 5 years.
Aim 1 will identify effects of fetal alcohol exposure that alter neural progenitor cell (NPC) aneuploidies after embryonic exposure ex vivo.
Aim 2 will determine cell fate and functional consequences of alcohol exposure to aneuploid &aneusomic NPC populations during development, and neurons in adult cortical cell populations.
Aim 3 will determine neuronal and non-neuronal identities and distributions of specific aneusomies produced by fetal alcohol exposure using a novel in vivo reporter system. Completion of these Aims could provide a new framework for understanding and therapeutically approaching FASD.

Public Health Relevance

Fetal alcohol spectrum disorders (FASD) constitute one of the most common causes of preventable birth defects that include mental retardation. The myriad cellular and molecular changes in the brain may stem from a newly identified change in the genomes of cells prenatally exposed to alcohol, through the generation of abnormal levels of mosaic aneuploid brain cells. This proposal will define the aneuploidy changes produced by fetal alcohol exposure during prenatal and postnatal life, providing a novel foundation from which CNS manifestations of FASD can be understood and potentially treated.

National Institute of Health (NIH)
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Regunathan, Soundar
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Liu, Xiaodong; Huang, Yong; Xu, Xiaomeng et al. (2016) Complete Genome Sequence of Multidrug-Resistant Citrobacter freundii Strain P10159, Isolated from Urine Samples from a Patient with Esophageal Carcinoma. Genome Announc 4:
Luo, Yun; Huang, Chen; Ye, Julian et al. (2016) Genome Sequence and Analysis of Peptoclostridium difficile Strain ZJCDC-S82. Evol Bioinform Online 12:41-9
Dai, Xiaotian; Zhou, Dongsheng; Xiong, Wei et al. (2016) The IncP-6 Plasmid p10265-KPC from Pseudomonas aeruginosa Carries a Novel ?ISEc33-Associated bla KPC-2 Gene Cluster. Front Microbiol 7:310
Yao, Xue; Sun, Qiang; Liu, Wenli et al. (2016) Complete Genome Sequence of Serratia rubidaea Isolated in China. Genome Announc 4:
Wang, Li; Liu, Lei; Liu, Dong et al. (2016) The First Report of a Fully Sequenced Resistance Plasmid from Shigella boydii. Front Microbiol 7:1579
Cheng, Shi; Xing, Shaozhen; Zhang, Xianglilan et al. (2016) Complete Genome Sequence of a New Enterococcus faecalis Bacteriophage, vB_EfaS_IME197. Genome Announc 4:
Sun, Fengjun; Zhou, Dongsheng; Sun, Qiang et al. (2016) Genetic characterization of two fully sequenced multi-drug resistant plasmids pP10164-2 and pP10164-3 from Leclercia adecarboxylata. Sci Rep 6:33982