We found that null mutations in the gene encoding the secreted growth factor progranulin (PGRN) are a frequent cause of frontotemporal dementia, particularly in patients affected with the pathological subtype referred to as frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Subsequently, the major protein that makes up the inclusions found in FTLD-U (and in amyotrophic lateral sclerosis, ALS) was identified as TAR DNA-binding protein-43 (TDP-43), an obscure nuclear protein known to be involved in exon splicing. Subsequent to this finding, mutations in the gene encoding TDP-43 (TARDBP) were identified as a direct cause of neurodegeneration in sporadic and familial patients with ALS. We have shown that decreasing PGRN expression activates cell death pathways leading to pathological processing of TDP-43 by caspases in cell culture models. Recent preliminary data revealed that deletion of progranulin in mice and in knockdown experiments in cells lead to enhanced sensitivity to ER stressors and increased levels of the transcription factor CHOP (C/EBP homologous protein), a protein that is induced by ER stress and promotes apoptosis. Without PGRN or in the presence of mutations in TARDBP, TDP-43 gets cleaved, which leads to translocation from the nucleus to the cytosol, a pathologic phenotype which resembles what happens to TDP-43 in patients with FTLD-U or ALS. Thus, loss of TDP-43 function due to inappropriate cleavage, translocation, or inclusion formation could play an important role in neurodegeneration. We also hypothesize that PGRN mutations other than null mutations, such as missense mutations, or causal TARDBP mutations can sufficiently abolish PGRN and TDP-43 functions to cause neurodegeneration. The overall goals of our proposal are 1) to provide additional mechanistic insight into the signaling pathways associated with PGRN and neuronal survival 2) to determine whether the shorter TDP-43 fragments are more fibrillogenic and are neurotoxic, a property that would explain the formation of inclusions, redistribution and neurodegeneration seen in FTLD-U and ALS;and 3) to explore neurodegenerative disease mechanism associated with TARDBP mutations. Our hypothesis is that loss of functional PGRN leads to loss of functional TDP-43, which leads to cell death.

Public Health Relevance

This proposal is designed to further investigate how progranulin is involved in the processing and biological function of TDP-43 and to determine if PGRN mutations other than null mutations are pathogenic. We will study the mechanism underlying TDP-43-associated neuropathology and determine whether mutations in TDP-43 can directly cause human diseases. Our goal is to gain better understanding of the underlying biology and developing insights causing TDP-43 proteinopathies, which might ultimately lead to improved therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG026251-05
Application #
8235828
Study Section
Cell Death in Neurodegeneration Study Section (CDIN)
Program Officer
Miller, Marilyn
Project Start
2006-09-01
Project End
2015-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
5
Fiscal Year
2012
Total Cost
$301,480
Indirect Cost
$104,434
Name
Mayo Clinic Jacksonville
Department
Type
DUNS #
153223151
City
Jacksonville
State
FL
Country
United States
Zip Code
32224
Cook, Casey; Dunmore, Judy H; Murray, Melissa E et al. (2014) Severe amygdala dysfunction in a MAPT transgenic mouse model of frontotemporal dementia. Neurobiol Aging 35:1769-77
Gendron, Tania F; Belzil, Veronique V; Zhang, Yong-Jie et al. (2014) Mechanisms of toxicity in C9FTLD/ALS. Acta Neuropathol 127:359-76
Belzil, Veronique V; Bauer, Peter O; Gendron, Tania F et al. (2014) Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients. Brain Res 1584:15-21
Lee, Wing C; Almeida, Sandra; Prudencio, Mercedes et al. (2014) Targeted manipulation of the sortilin-progranulin axis rescues progranulin haploinsufficiency. Hum Mol Genet 23:1467-78
van Blitterswijk, Marka; Mullen, Bianca; Wojtas, Aleksandra et al. (2014) Genetic modifiers in carriers of repeat expansions in the C9ORF72 gene. Mol Neurodegener 9:38
Bieniek, Kevin F; van Blitterswijk, Marka; Baker, Matthew C et al. (2014) Expanded C9ORF72 hexanucleotide repeat in depressive pseudodementia. JAMA Neurol 71:775-81
Adeli, Anahita; Savica, Rodolfo; Lowe, Val J et al. (2014) The GGGGCC repeat expansion in C9ORF72 in a case with discordant clinical and FDG-PET findings: PET trumps syndrome. Neurocase 20:110-20
van Blitterswijk, Marka; Mullen, Bianca; Nicholson, Alexandra M et al. (2014) TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol 127:397-406
Carlomagno, Yari; Zhang, Yongjie; Davis, Mary et al. (2014) Casein kinase II induced polymerization of soluble TDP-43 into filaments is inhibited by heat shock proteins. PLoS One 9:e90452
Su, Zhaoming; Zhang, Yongjie; Gendron, Tania F et al. (2014) Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron 83:1043-50

Showing the most recent 10 out of 73 publications