The maintenance of well-functioning mitochondria plays a key role in neuronal health. In the previous project period, we found that neuronal injury in several neurotoxin and genetic models of parkinsonian neurodegeneration converged on eliciting increased mitochondrial turnover by autophagy (mitophagy). While mitophagy in some models is neuroprotective, in other models, inhibiting autophagy reduces neurite retraction and cell death. We hypothesize that the capacity to replace damaged/degraded mitochondria through mitochondrial biogenesis is important in determining survival-death outcomes in this context. Preliminary data indicate a key role for extracellular signal-regulated protein kinase 2 (ERK2), which shows an altered mitochondrial distribution in Parkinson's disease midbrain neurons, in regulating both mitophagy and mitochondrial biogenesis. We will utilize differentiated neuroblastoma cells, primary embryonic mouse neurons and in vivo mouse models to study the mechanism(s) leading to the observed decreases in mitochondrial content and function, study the role of phosphorylation in regulating biogenesis, and determine the neuroprotective potential for strategies to modulate mitochondrial content in toxin and dominant genetic models of Parkinson's disease.

Public Health Relevance

Mitochondria represent the primary source of energy within brain cells (neurons). While removing damaged mitochondria can be beneficial, excessive loss of mitochondria also contributes to neurodegeneration in several models of Parkinson's disease. We will determine why these injuries reduce mitochondrial content, and whether enhancing the ability of neuronal cells to rebuild new mitochondria promotes beneficial effects of mitochondrial recycling.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Neural Oxidative Metabolism and Death Study Section (NOMD)
Program Officer
Wise, Bradley C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Wang, Kent Z Q; Zhu, Jianhui; Dagda, Ruben K et al. (2014) ERK-mediated phosphorylation of TFAM downregulates mitochondrial transcription: implications for Parkinson's disease. Mitochondrion 17:132-40
Chu, Charleen T; Bayýýr, Hulya; Kagan, Valerian E (2014) LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease. Autophagy 10:376-8
Patel, Vivek P; Chu, Charleen T (2014) Decreased SIRT2 activity leads to altered microtubule dynamics in oxidatively-stressed neuronal cells: implications for Parkinson's disease. Exp Neurol 257:170-81
Plowey, Edward D; Johnson, Jon W; Steer, Erin et al. (2014) Mutant LRRK2 enhances glutamatergic synapse activity and evokes excitotoxic dendrite degeneration. Biochim Biophys Acta 1842:1596-603
Sanders, Laurie H; McCoy, Jennifer; Hu, Xiaoping et al. (2014) Mitochondrial DNA damage: molecular marker of vulnerable nigral neurons in Parkinson's disease. Neurobiol Dis 70:214-23
Kagan, Valerian E; Chu, Charleen T; Tyurina, Yulia Y et al. (2014) Cardiolipin asymmetry, oxidation and signaling. Chem Phys Lipids 179:64-9
Cherra 3rd, Salvatore J; Steer, Erin; Gusdon, Aaron M et al. (2013) Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons. Am J Pathol 182:474-84
Chu, Charleen T; Ji, Jing; Dagda, Ruben K et al. (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15:1197-205
Oczypok, Elizabeth A; Oury, Tim D; Chu, Charleen T (2013) It's a cell-eat-cell world: autophagy and phagocytosis. Am J Pathol 182:612-22
Zhu, Jianhui; Wang, Kent Z Q; Chu, Charleen T (2013) After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 9:1663-76

Showing the most recent 10 out of 37 publications