Aging can be generally characterized as the long-term loss of tissue architecture, function and regenerative capacity. In the previous funding period, we explored the effects of two key challenges to long-term tissue maintenance using a novel system to delete the ATR checkpoint kinase in adult mice. We showed 1) that exhaustion of regenerative potential through stem cell attrition and increased replicative demand accelerates the appearance of age-related pathologies, and 2) that failure to suppress the accumulation of highly-damaged cells can dominantly inhibit tissue regeneration. This later mechanism putatively serves as a tissue renewal checkpoint that prevents regeneration until damaged cells can be effectively cleared. Finally, our preliminary results indicate that delayed renewal is immediately followed by a highly stimulatory phase that ultimately accelerates degeneration. Herein, we propose to further develop these research areas by defining the physiological conditions that promote replication-associated DNA damage and correlating this damage with debilitated stem cell potential. To accomplish this goal, hypomorphic ATR suppression will be used to convert transient replication abnormalities into more long-lived intermediates (double strand breaks). This system will permit the identification of both cell populations and genomic loci that are selectively susceptible to replication abnormalities during compensatory renewal. In addition, we propose to use our ATR-conditional system to characterize how DNA-damaged cells coordinate the distinct phases of regeneration through extrinsic factors. These factors include ones that that inhibit renewal and those that subsequently stimulate it. In aggregate, these studies will determine how urgent episodes of compensatory renewal are regulated and how these events can lead to the decline of long-term renewal potential.

Public Health Relevance

Age-associated pathologies are a major contributor to morbidity and mortality in the United States. Occurrence of these diseases is strongly influenced by the effectiveness of organ maintenance and tissue regeneration. In this proposal, we describe experiments to both better define the causes of debilitated regenerative potential with age and investigate the mechanisms used to renew tissues following acute loss of tissue integrity.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG027376-08
Application #
8481485
Study Section
Cellular Mechanisms in Aging and Development Study Section (CMAD)
Program Officer
Velazquez, Jose M
Project Start
2006-07-15
Project End
2016-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
8
Fiscal Year
2013
Total Cost
$309,960
Indirect Cost
$116,235
Name
University of Pennsylvania
Department
Biology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Anastassiadis, Theonie; Brown, Eric J (2014) Wild-type RAS: keeping mutant RAS in CHK. Cancer Cell 25:137-8
Lee, Youngsoo; Brown, Eric J; Chang, Sandy et al. (2014) Pot1a prevents telomere dysfunction and ATM-dependent neuronal loss. J Neurosci 34:7836-44
Ragland, Ryan L; Patel, Sima; Rivard, Rebecca S et al. (2013) RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells. Genes Dev 27:2259-73
Schoppy, David W; Brown, Eric J (2012) Chk'ing p53-deficient breast cancers. J Clin Invest 122:1202-5
Lee, Youngsoo; Shull, Erin R P; Frappart, Pierre-Olivier et al. (2012) ATR maintains select progenitors during nervous system development. EMBO J 31:1177-89
Schoppy, David W; Ragland, Ryan L; Gilad, Oren et al. (2012) Oncogenic stress sensitizes murine cancers to hypomorphic suppression of ATR. J Clin Invest 122:241-52
Gilad, Oren; Nabet, Barzin Y; Ragland, Ryan L et al. (2010) Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res 70:9693-702
Schoppy, David W; Ruzankina, Yaroslava; Brown, Eric J (2010) Removing all obstacles: a critical role for p53 in promoting tissue renewal. Cell Cycle 9:1313-9
Smith, Kevin D; Fu, Michael A; Brown, Eric J (2009) Tim-Tipin dysfunction creates an indispensible reliance on the ATR-Chk1 pathway for continued DNA synthesis. J Cell Biol 187:15-23
Ruzankina, Yaroslava; Schoppy, David W; Asare, Amma et al. (2009) Tissue regenerative delays and synthetic lethality in adult mice after combined deletion of Atr and Trp53. Nat Genet 41:1144-9

Showing the most recent 10 out of 14 publications