Recently, our lab has discovered a highly conserved transcription factor and co-regulator required and specific for dietary restriction in C. elegans. We believe that these proteins form a core-signaling pathway that responds to and integrates an organism's response to reduced caloric intake. In our initiation of this project, we will understand the molecular mechanism by which this pathway perceives and interprets the environmental signals that ultimately result in increased longevity. SMK-1 was originally characterized as a co-regulator of the FOXO3a orthologue, DAF- 16, required to mediate insulin/IGF-1 signaling (IIS). In worms, DR and IIS appear to independently modulate longevity. Therefore, we were very surprised to find that smk-1 is also required to mediate the response to dietary restriction, although daf-16 is not. Because IIS and DR appear to regulate longevity by two distinct transcription factors, DAF-16 and PHA-4, respectively, we aim to establish an informatics platform of DR regulation by pha-4 to discern the conservation and differences between these two longevity cues (Aim I). With the identification of a single forkhead (pha-4) specific for dietary restriction, we are well poised to address an important physiological question in biology: which tissues register and respond to dietary restriction (Aim II)? In this set of experiments, we will restore wild-type copies of pha-4 to animals normally mutant in this gene using tissue specific promoters to direct expression. Finally (Aim III), using a proteomics approach, we will identify proteins that interact with PHA-4 during adulthood under conditions of dietary restriction. The identity of proteins which comprise the PHA-4 complex required for the response to DR will provide the framework to understand the entire molecular pathway upon which the response to diet restriction is mediated. Public Health Relevance: The importance of our studies on human health are multifold. The mechanism by which dietary restriction (DR) results in an extended lifespan is unknown but appears to be conserved across phyla, affecting the lifespan of organisms ranging from yeast to mammals. Our goal is to understand the molecular underpinnings of this pathway to allow manipulation of the DR response resulting in increased healthy lifespan without harmful effects on metabolism, development or reproduction.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG027463-03
Application #
7904972
Study Section
Cellular Mechanisms in Aging and Development Study Section (CMAD)
Program Officer
Finkelstein, David B
Project Start
2008-07-01
Project End
2013-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
3
Fiscal Year
2010
Total Cost
$483,723
Indirect Cost
Name
Salk Institute for Biological Studies
Department
Type
DUNS #
078731668
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Ziegler, Yvonne S; Moresco, James J; Tu, Patricia G et al. (2018) Proteomic analysis identifies highly expressed plasma membrane proteins for detection and therapeutic targeting of specific breast cancer subtypes. Clin Proteomics 15:30
Seah, Nicole E; de Magalhaes Filho, C Daniel; Petrashen, Anna P et al. (2016) Autophagy-mediated longevity is modulated by lipoprotein biogenesis. Autophagy 12:261-72
Homer, Christina M; Summers, Diana K; Goranov, Alexi I et al. (2016) Intracellular Action of a Secreted Peptide Required for Fungal Virulence. Cell Host Microbe 19:849-64
Heimbucher, Thomas; Liu, Zheng; Bossard, Carine et al. (2015) The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity. Cell Metab 22:151-63
Papp, Stephanie J; Huber, Anne-Laure; Jordan, Sabine D et al. (2015) DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization. Elife 4:
Dumesic, Phillip A; Rosenblad, Magnus A; Samuelsson, Tore et al. (2015) Noncanoncial signal recognition particle RNAs in a major eukaryotic phylum revealed by purification of SRP from the human pathogen Cryptococcus neoformans. Nucleic Acids Res 43:9017-27
Tsai, Hsin-Yue; Chen, Chun-Chieh G; Conte Jr, Darryl et al. (2015) A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi. Cell 160:407-19
Dumesic, Phillip A; Homer, Christina M; Moresco, James J et al. (2015) Product binding enforces the genomic specificity of a yeast polycomb repressive complex. Cell 160:204-18
Baird, Nathan A; Douglas, Peter M; Simic, Milos S et al. (2014) HSF-1-mediated cytoskeletal integrity determines thermotolerance and life span. Science 346:360-3
Beys-da-Silva, Walter O; Santi, Lucélia; Berger, Markus et al. (2014) Secretome of the biocontrol agent metarhizium anisopliae induced by the cuticle of the cotton pest Dysdercus peruvianus reveals new insights into infection. J Proteome Res 13:2282-96

Showing the most recent 10 out of 25 publications