Pelvic floor disorders affect up to one-third of adult women. One of the most prevalent pelvic floor disorders is pelvic organ prolapse, a condition in which the pelvic organs (bladder, vagina, cervix and uterus) herniate through the vaginal opening. Up to 11% of women have surgery for pelvic organ prolapse or urinary incontinence in their lifetime and more than 225,000 inpatient surgical procedures for pelvic organ prolapse are performed per year in the United States at an estimated annual direct medical cost of over one billion dollars. Although multiple mechanisms have been hypothesized to contribute to the development of pelvic organ prolapse, none fully explain the origin and natural history of this process. Epidemiologic studies indicate that vaginal birth and aging are the two major risk factors for developing pelvic organ prolapse. The specific effects of pregnancy and parturition and aging on pelvic floor support mechanisms have not been identified. Recently, it was reported that mice with null mutations in the gene encoding lysyl oxidase like 1 (LOXL1) develop pelvic organ prolapse. We discovered that fibulin-5 (FblnS) knockout mice also develop severe urogenital prolapse. Interestingly, LOXL1 and fibulin-5 are proteins involved in synthesis and assembly of elastic fibers into the extracellular matrix, and both mouse models develop severe prolapse of the vaginal wall after giving birth. By way of preliminary studies, we find that transcripts of two enzymes that degrade elastin are increased significantly in the vaginal muscularis of women with pelvic organ prolapse. These findings, together with results from these two animal models, provide the foundation of the overall hypothesis of this grant application, namely that pelvic organ support is maintained by a delicate balance between the synthesis/assembly and degradation of elastic fibers in the vaginal wall. We propose that damage to the elastic tissue of the vagina and its supporting structures leads to loss of vaginal support. The degree of functional loss depends on the extent of initial injury, presence of natural protease inhibitors that modulate enzymatic damage, and the ability of elastin fibers to undergo repair. In this application, we propose (1) to determine the regulation of elastic fiber homeostasis in the vagina and supportive connective tissues of the pelvic floor during pregnancy, parturition, and the postpartum time period; (2) To determine the impact of steroid hormones and mechanical trauma on pelvic organ prolapse and elastic fiber formation and degradation; and (3) to test the hypothesis that postpartum synthesis of fibulin-5 is crucial for recovery of the vaginal wall from vaginal childbirth. ? ? ?

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Urologic and Kidney Development and Genitourinary Diseases Study Section (UKGD)
Program Officer
Kohanski, Ronald A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
Obstetrics & Gynecology
Schools of Medicine
United States
Zip Code
Chin, Kathleen; Wieslander, Cecilia; Shi, Haolin et al. (2016) Pelvic Organ Support in Animals with Partial Loss of Fibulin-5 in the Vaginal Wall. PLoS One 11:e0152793
Alsofi, Loai; Daley, Eileen; Hornstra, Ian et al. (2016) Sex-Linked Skeletal Phenotype of Lysyl Oxidase Like-1 Mutant Mice. Calcif Tissue Int 98:172-85
Montoya, T Ignacio; Maldonado, P Antonio; Acevedo, Jesus F et al. (2015) Effect of vaginal or systemic estrogen on dynamics of collagen assembly in the rat vaginal wall. Biol Reprod 92:43
Papke, Christina L; Yanagisawa, Hiromi (2014) Fibulin-4 and fibulin-5 in elastogenesis and beyond: Insights from mouse and human studies. Matrix Biol 37:142-9
Rahn, David D; Good, Meadow M; Roshanravan, Shayzreen M et al. (2014) Effects of preoperative local estrogen in postmenopausal women with prolapse: a randomized trial. J Clin Endocrinol Metab 99:3728-36
Budatha, Madhusudhan; Silva, Simone; Montoya, Teodoro Ignacio et al. (2013) Dysregulation of protease and protease inhibitors in a mouse model of human pelvic organ prolapse. PLoS One 8:e56376
Balgobin, Sunil; Montoya, T Ignacio; Shi, Haolin et al. (2013) Estrogen alters remodeling of the vaginal wall after surgical injury in guinea pigs. Biol Reprod 89:138
Budatha, Madhusudhan; Roshanravan, Shayzreen; Zheng, Qian et al. (2011) Extracellular matrix proteases contribute to progression of pelvic organ prolapse in mice and humans. J Clin Invest 121:2048-59
Huang, Jianbin; Davis, Elaine C; Chapman, Shelby L et al. (2010) Fibulin-4 deficiency results in ascending aortic aneurysms: a potential link between abnormal smooth muscle cell phenotype and aneurysm progression. Circ Res 106:583-92
Word, R Ann; Pathi, Sujatha; Schaffer, Joseph I (2009) Pathophysiology of pelvic organ prolapse. Obstet Gynecol Clin North Am 36:521-39

Showing the most recent 10 out of 16 publications