Pregnancy-associated plasma protein-A (PAPP-A) is a zinc metalloprotease that was discovered to function outside of pregnancy to enhance local insulin-like growth factor (IGF) bioavailability. Mice deficient in PAPP-A (gene knock-out) have a 30-40% increase in both median and maximum lifespan compared to wild-type littermates, without evidence of endocrine abnormalities or caloric restriction. However, the particular mechanisms underlying this longevity phenotype are poorly understood. In preliminary experiments, we observed that PAPP-A knock-out mice on a high fat diet were resistant to fat accumulation in the mesenteric fat depot (mouse equivalent to human visceral fat) where there was a significant reduction in cell size. Were these pre-adipocytes that were not being stimulated to differentiate due to decreased IGF-I bioavailability in the absence of PAPP-A? Or was there suppressed lipid accumulation by mature adipocytes? Moreover, why was the defect relatively specific for the mesenteric fat depot in the global PAPP-A knock-out model? Did it have anything to do with differential PAPP-A expression? Micro-array analyses of RNA from human and non-human primate pre-adipocytes may be relevant to the last question. In these experiments, PAPP-A was the most distinctive gene found to be overexpressed, with levels in pre-adipocytes from visceral fat depots greatly exceeding those in subcutaneous fat. Furthermore, the most potent stimulators of PAPP-A expression are pro- inflammatory, which are associated with both aging and obesity. Our primary hypothesis is that PAPP-A stimulates adipogenesis in an IGF-dependent manner and with depot-specific effects on pre-adipocyte proliferation and differentiation. The corollary is that inhibition of PAPP-A will moderate adipogenesis preferentially in visceral fat. This has potential importance since major clinical consequences occur with increased visceral fat relative to subcutaneous fat. Our secondary hypothesis is that inhibition of PAPP-A will prolong lifespan even in animals on a high fat diet.
Specific Aims : (1) Determine age-related changes in depot- specific adipogenesis and the role of PAPP-A in this regulation, (2) Determine the lifespan of PAPP-A knock- out and wild-type mice fed a high fat diet, and (3) Determine the effect of conditional PAPP-A gene knock-out in adult mice on depot-specific adipogenesis and lifespan. All expertise and model systems are in hand to conduct this research. Significance: These studies will provide new insight into regulation of fat distribution and function and elucidate mechanisms by which PAPP-A deficiency promotes longevity. Impact: Our findings could have clinical implications for novel strategies using PAPP-A as a preventive target for visceral fat accumulation and its life-shortening morbidities.

Public Health Relevance

Increased visceral fat relative to subcutaneous fat is associated with increased risk of severe clinical complications. Thus, the proposed studies to better understand the factors regulating the different fat tissue depots, with particular focus on a novel enzyme, could have major implications for potential treatment and/or prevention strategies for obesity and obesity-related morbidities and the consequent extension of a healthy lifespan.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG028141-09
Application #
8823710
Study Section
Cellular Mechanisms in Aging and Development Study Section (CMAD)
Program Officer
Fridell, Yih-Woei
Project Start
2006-04-01
Project End
2016-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
9
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Bale, Laurie K; West, Sally A; Conover, Cheryl A (2018) Characterization of mouse pericardial fat: regulation by PAPP-A. Growth Horm IGF Res 42-43:1-7
Conover, Cheryl A; Oxvig, Claus (2017) PAPP-A: a promising therapeutic target for healthy longevity. Aging Cell 16:205-209
Bale, Laurie K; West, Sally A; Conover, Cheryl A (2017) Inducible knockdown of pregnancy-associated plasma protein-A gene expression in adult female mice extends life span. Aging Cell 16:895-897
Conover, Cheryl A; Bale, Laurie K; Nair, K Sreekumaran (2016) Comparative gene expression and phenotype analyses of skeletal muscle from aged wild-type and PAPP-A-deficient mice. Exp Gerontol 80:36-42
Conover, Cheryl A; Bale, Laurie K; Marler, Ronald J (2015) Pregnancy-associated plasma protein-A deficiency improves survival of mice on a high fat diet. Exp Gerontol 70:131-4
Mason, Emily J; Grell, Jacquelyn A; West, Sally A et al. (2014) Motor and memory testing of long-lived pregnancy-associated plasma protein--a knock-out mice. Growth Horm IGF Res 24:251-5
Harstad, Sara L; Conover, Cheryl A (2014) Tissue-specific changes in pregnancy associated plasma protein-A expression with age in mice. Exp Gerontol 57:13-7
Davidge-Pitts, Caroline; Escande, Carlos J; Conover, Cheryl A (2014) Preferential expression of PAPPA in human preadipocytes from omental fat. J Endocrinol 222:87-97
Conover, Cheryl A; Harstad, Sara L; Tchkonia, Tamar et al. (2013) Preferential impact of pregnancy-associated plasma protein-A deficiency on visceral fat in mice on high-fat diet. Am J Physiol Endocrinol Metab 305:E1145-53
Conover, Cheryl A; Bale, Laurie K; Powell, David R (2013) Inducible knock out of pregnancy-associated plasma protein-a gene expression in the adult mouse: effect on vascular injury response. Endocrinology 154:2734-8

Showing the most recent 10 out of 21 publications