During last funding period, we identified and established that TWEAK cytokine is a major regulator of skeletal muscle mass during aging and disuse conditions. We have now obtained strong evidence suggesting that the TWEAK causes insulin resistance in skeletal muscle. However, the mechanisms by which TWEAK induces muscle atrophy or insulin resistance remain less well understood. PGC-1? cofactor plays a major role in regulation of skeletal muscle mass, fiber-type composition, and mitochondrial biogenesis. Our preliminary studies have shown that TWEAK suppresses the expression of PGC-1? and mitochondrial content and inhibits insulin signaling in skeletal muscle. We have also found that disuse conditions or type II diabetes involve the inducible expression of TWEAK receptor Fn14 (but not TWEAK itself) in skeletal muscle. Our initial analysis has revealed that both human and mouse Fn14 promoter contains CpG rich regions and that demethylation of Fn14 promoter could be a crucial event for the induction of Fn14 expression in skeletal muscle. In the next phase of this project, we will investigate the mechanisms by which TWEAK causes sarcopenia, disuse-related muscle atrophy, and insulin resistance, and how the expression of Fn14 gets up regulated in skeletal muscle in different conditions. We will address the following three specific aims:
AIM I. Investigate the role of PGC-1? in TWEAK-mediated skeletal muscle atrophy in vivo. Hypothesis 1: TWEAK causes muscle atrophy and fiber-type switching through down-regulation of PGC-1? expression.
AIM II. Investigate the key mechanisms by which TWEAK-Fn14 system induces insulin-resistance in adult and/or aged skeletal muscle. Hypothesis 2: TWEAK induces insulin resistance by inhibiting insulin receptor substrate (IRS1) phosphorylation and diminishing oxidative phosphorylation in skeletal muscle.
AIM III : Investigate the molecular events leading to increased expression of TWEAK receptor Fn14 in skeletal muscle. Hypothesis 3: Demethylation of CpG islands in Fn14 promoter followed by binding of SP1 transcription factor triggers the expression of Fn14 in skeletal muscle in catabolic states. Successful completion of this project will provide critical insights about sarcopenia durin aging and type II diabetes and provide novel avenues for therapeutic interventions.

Public Health Relevance

Skeletal muscle wasting is a debilitating consequence of aging and many chronic diseases such as type II diabetes common at older age. However, there is still no approved therapy for treatment of this disorder/syndrome. It is essential to develop new medicines that can preserve skeletal muscle mass during aging. The proposed studies will identify the mechanisms of action of TWEAK cytokine, a recently identified mediator of muscle wasting. Successful completion of this project will improve the basic understating of etiology of muscle wasting and type II diabetes and will lead to the identification of a novel drug target to preserve muscle mass and function in aging human population.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Aging Systems and Geriatrics Study Section (ASG)
Program Officer
Williams, John
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Louisville
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Ogura, Yuji; Tajrishi, Marjan M; Sato, Shuichi et al. (2014) Therapeutic potential of matrix metalloproteinases in Duchenne muscular dystrophy. Front Cell Dev Biol 2:11
Tajrishi, Marjan M; Zheng, Timothy S; Burkly, Linda C et al. (2014) The TWEAK-Fn14 pathway: a potent regulator of skeletal muscle biology in health and disease. Cytokine Growth Factor Rev 25:215-25
Sato, Shuichi; Ogura, Yuji; Kumar, Ashok (2014) TWEAK/Fn14 Signaling Axis Mediates Skeletal Muscle Atrophy and Metabolic Dysfunction. Front Immunol 5:18
Tajrishi, Marjan M; Sato, Shuichi; Shin, Jonghyun et al. (2014) The TWEAK-Fn14 dyad is involved in age-associated pathological changes in skeletal muscle. Biochem Biophys Res Commun 446:1219-24
Hindi, Sajedah M; Mishra, Vivek; Bhatnagar, Shephali et al. (2014) Regulatory circuitry of TWEAK-Fn14 system and PGC-1* in skeletal muscle atrophy program. FASEB J 28:1398-411
Tajrishi, Marjan M; Shin, Jonghyun; Hetman, Michal et al. (2014) DNA methyltransferase 3a and mitogen-activated protein kinase signaling regulate the expression of fibroblast growth factor-inducible 14 (Fn14) during denervation-induced skeletal muscle atrophy. J Biol Chem 289:19985-99
Hindi, Sajedah M; Sato, Shuichi; Choi, Yongwon et al. (2014) Distinct roles of TRAF6 at early and late stages of muscle pathology in the mdx model of Duchenne muscular dystrophy. Hum Mol Genet 23:1492-505
Shin, Jonghyun; Tajrishi, Marjan M; Ogura, Yuji et al. (2013) Wasting mechanisms in muscular dystrophy. Int J Biochem Cell Biol 45:2266-79
Hindi, Sajedah M; Shin, Jonghyun; Ogura, Yuji et al. (2013) Matrix metalloproteinase-9 inhibition improves proliferation and engraftment of myogenic cells in dystrophic muscle of mdx mice. PLoS One 8:e72121
Hindi, Sajedah M; Tajrishi, Marjan M; Kumar, Ashok (2013) Signaling mechanisms in mammalian myoblast fusion. Sci Signal 6:re2

Showing the most recent 10 out of 32 publications