This revised application proposes to renew R01 AG030146, "Genetic Epidemiology of Cognitive Decline in an Aging Population Sample". Cognitive decline in older age and its most severe manifestation, Alzheimer's disease, are public health problems of enormous magnitude that are projected to become much larger with the continued growth of the oldest population groups. We propose to build on our previous work to further the understanding of the genetic architecture of these important and common phenotypes through an integrated consideration of both epigenomic variation and genomic variation. The proposed work offers substantial potential for increasing our understanding of these phenotypes among African Americans (AAs). An integrated approach to genomic and epigenomic variation may be especially relevant in a study comparing results among AAs and European Americans (EAs) because of the different average exposures to life experiences and environments of these two racial/ethnic groups. The plasticity of the epigenome makes it an excellent place to search for long-lasting traces of past events such as midlife or earlier social and experiential disease risk factors that may be important to understanding racial/ethnic differences in disease risk. We will initially conduct a multi-ethnic meta-analysis of these phenotypes in existing genome wide association scan (GWAS) data from seven cohorts of AAs and EAs representing a large portion of available GWAS data for AAs. We will obtain additional genomic data for a large sample of 5000 AAs and 5000 EAs from these cohorts to characterize the relation of the class of genomic variation in the 0.001-0.05 frequency spectrum to cognitive decline by interrogation of coding and splicing variation throughout the human genome. We will then assemble a comprehensive picture of possible causal genomic variants and of their interconnections using integrated functional dissection of phenomic, transcriptomic (RNA and miRNA), and epigenomic (DNA methylation and H3K9Ac profiles) data available for two of the biracial cohorts. Finally, we will generate DNA methylation profiles and miRNA from 100 AA brains (50 with Alzheimer's disease and 50 controls) from these same two cohorts ) to perform targeted investigations of the role of DNA methylation and miRNA in susceptibility loci of AA subjects and compare these results to those obtained from EA subjects.

Public Health Relevance

This application investigates genetic, epigenetic, and other factors affecting cognitive decline among older people of African and European ancestry. Cognitive decline is of high public health importance as its occurrence is continuing to increase rapidly with the growth of the oldest population age groups in the US and all other developed countries.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
2R01AG030146-06A1
Application #
8506190
Study Section
Neurological, Aging and Musculoskeletal Epidemiology (NAME)
Program Officer
Wagster, Molly V
Project Start
2007-09-30
Project End
2018-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
6
Fiscal Year
2013
Total Cost
$693,593
Indirect Cost
$150,213
Name
Rush University Medical Center
Department
None
Type
Organized Research Units
DUNS #
068610245
City
Chicago
State
IL
Country
United States
Zip Code
60612
Jun, G; Ibrahim-Verbaas, C A; Vronskaya, M et al. (2016) A novel Alzheimer disease locus located near the gene encoding tau protein. Mol Psychiatry 21:108-17
Ibrahim-Verbaas, C A; Bressler, J; Debette, S et al. (2016) GWAS for executive function and processing speed suggests involvement of the CADM2 gene. Mol Psychiatry 21:189-97
Hohman, Timothy J; Cooke-Bailey, Jessica N; Reitz, Christiane et al. (2016) Global and local ancestry in African-Americans: Implications for Alzheimer's disease risk. Alzheimers Dement 12:233-43
Hohman, Timothy J; Bush, William S; Jiang, Lan et al. (2016) Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium. Neurobiol Aging 38:141-50
Mez, Jesse; Mukherjee, Shubhabrata; Thornton, Timothy et al. (2016) The executive prominent/memory prominent spectrum in Alzheimer's disease is highly heritable. Neurobiol Aging 41:115-21
Rajan, Kumar B; Aggarwal, Neelum T; Schneider, Julie A et al. (2016) Role of APOE ε4 Allele and Incident Stroke on Cognitive Decline and Mortality. Alzheimer Dis Assoc Disord 30:318-323
Ridge, Perry G; Hoyt, Kaitlyn B; Boehme, Kevin et al. (2016) Assessment of the genetic variance of late-onset Alzheimer's disease. Neurobiol Aging 41:200.e13-20
Chouraki, Vincent; Reitz, Christiane; Maury, Fleur et al. (2016) Evaluation of a Genetic Risk Score to Improve Risk Prediction for Alzheimer's Disease. J Alzheimers Dis 53:921-32
Cade, Brian E; Gottlieb, Daniel J; Lauderdale, Diane S et al. (2016) Common variants in DRD2 are associated with sleep duration: the CARe consortium. Hum Mol Genet 25:167-79
Karch, Celeste M; Ezerskiy, Lubov A; Bertelsen, Sarah et al. (2016) Alzheimer's Disease Risk Polymorphisms Regulate Gene Expression in the ZCWPW1 and the CELF1 Loci. PLoS One 11:e0148717

Showing the most recent 10 out of 65 publications