In the recent years, a number of studies using functional MRI (fMRI) have shown substantial differences between the activation pattern of older subjects (>50 years of age) and younger subjects (21-40 years) while performing a number of different sensorimotor and cognitive tasks. It has been concluded that the contrast observed is due to differences in neuronal activity in the older subjects. However, early hypothesis that normal aging involves widespread loss of neurons have been revised in light of accumulating evidence that in most regions of the brain, the number of neurons is stable throughout adulthood and senescence. In addition to direct effects on neuronal function, factors contributing to cerebrovascular reactivity is known to be altered in older people that could give rise to altered hemodynamic responses. Since the signal observed using fMRI could be modulated both by hemodynamics and oxygenation changes resulting from neuronal changes, these two factors must be separated to gain a better understanding about age related changes in the activation pattern obtained using fMRI. The present project proposed intends to combine basic science, engineering, and computational issues to specifically elucidate mechanisms (neuronal vs vascular) that results in older subjects having altered brain activation in comparison to young subjects. Results obtained from the noninvasive technique (fMRI) would provide ways to measure a number of relevant physiological factors and characterize them biophysically to understand human brain function with aging. Methods and techniques developed can also be used to study between two or more different groups.

Public Health Relevance

The present project will help determine biophysical aspects of aging using non-invasive functional Magnetic Resonance Imaging (fMRI). As longitudinal studies are very important to follow individuals through different stages of their life span, fMRI techniques would become crucial in obtaining valuable biomarkers in studies of aging. FMRI presents many caveats in determining the actual physiological indicators that influence signal response in young and old subjects. This project is designed to address certain caveats by effectively testing and quantifying the neural and hemodynamic components that may modulate signal response in young and old subjects. This study will significantly gain information regarding the underlying nature and necessary corrections in fMRI signals. Such a correction is necessary to accurately determine the progression and determinants of change across all segments of the life span that affect cognitive effects and brain function.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Clinical Neuroscience and Neurodegeneration Study Section (CNN)
Program Officer
Wise, Bradley C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Medicine & Dentistry of NJ
Schools of Medicine
United States
Zip Code
Kannurpatti, Sridhar S; Motes, Michael A; Biswal, Bharat B et al. (2014) Assessment of unconstrained cerebrovascular reactivity marker for large age-range FMRI studies. PLoS One 9:e88751
Tsai, Yuan-Hsiung; Yuan, Rui; Huang, Yen-Chu et al. (2014) Altered resting-state FMRI signals in acute stroke patients with ischemic penumbra. PLoS One 9:e105117
Lee, Sheng-Yu; Chen, Shiou-Lan; Chang, Yun-Hsuan et al. (2014) Variation of types of alcoholism: review and subtypes identified in Han Chinese. Prog Neuropsychopharmacol Biol Psychiatry 48:36-40
Di, Xin; Biswal, Bharat B (2014) Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging. Neuroimage 86:53-9
Fu, Zening; Chan, Shing-Chow; Di, Xin et al. (2014) Adaptive covariance estimation of non-stationary processes and its application to infer dynamic connectivity from fMRI. IEEE Trans Biomed Circuits Syst 8:228-39
Di, Xin; Rypma, Bart; Biswal, Bharat B (2014) Correspondence of executive function related functional and anatomical alterations in aging brain. Prog Neuropsychopharmacol Biol Psychiatry 48:41-50
Kalcher, Klaudius; Boubela, Roland N; Huf, Wolfgang et al. (2013) RESCALE: Voxel-specific task-fMRI scaling using resting state fluctuation amplitude. Neuroimage 70:80-8
Taylor, Paul A; Saad, Ziad S (2013) FATCAT: (an efficient) Functional and Tractographic Connectivity Analysis Toolbox. Brain Connect 3:523-35
Di, Xin; Biswal, Bharat B (2013) Modulatory interactions of resting-state brain functional connectivity. PLoS One 8:e71163
Di, Xin; Kannurpatti, Sridhar S; Rypma, Bart et al. (2013) Calibrating BOLD fMRI activations with neurovascular and anatomical constraints. Cereb Cortex 23:255-63

Showing the most recent 10 out of 13 publications