This proposal describes a plan to study frontotemporal lobar degeneration (FTLD) using the infrastructure established by the Alzheimer's Disease Neuroimaging Initiative (ADNI). FTLD is a common cause of dementia, especially in patients under the age of 65, with large economic and social costs. Over the next few years, potential therapeutic agents for FTLD will likely emerge and require clinical testing. In preparation for these clinical trials, it is important to establish precise, reliable and cost-effective markers for disease progression, to maximize the power of treatment trials to detect disease modifying effects. In the proposed study, 120 patients with FTLD and 120 age-matched controls will be studied with MRI, FDG-PET, and blood, urine and CSF biomarkers over the course of one year to determine the best regions and best methods for following the progression of FTLD. All patients will also undergo PIB-PET scanning, which identifies beta-amyloid plaques associated with Alzheimer's disease.
The specific aims of the study are: 1) To identify the regions where FTLD shows greatest longitudinal changes in glucose metabolism, cerebral perfusion, and gray matter volume with the lowest variance, 2) To identify regions where FTLD shows greatest longitudinal changes with lowest variance in white matter tract integrity, 3) To contrast the performance of FDG-PET, ASL perfusion, gray matter volume and white matter tract integrity to detect longitudinal changes in FTLD, 4) To establish the clinical correlates of longitudinal changes in glucose metabolism, perfusion, gray matter volume and white matter integrity in FTLD, 5) To quantify the changes in CSF tau and A-beta1-42 levels and tau/abeta ratios over time in FTLD, and 6) To define the metabolic, structural imaging and CSF biomarker features predicting increased PIB retention with a clinical diagnosis of FTLD. Should these aims be achieved, the proposed study would provide firm data about which regions are the most sensitive indicators for following the course of disease in FTLD, and whether PET is significantly better than MRI for this purpose or visa-versa. The data would also provide estimates from which power could be calculated for clinical studies. All the data will eventually be available in a publicly accessible database for use by other researchers.

Public Health Relevance

The frontotemporal lobar degeneration (FTLD) neuroimaging initiative will provide information on how to use brain images to follow the course of FTLD over time, and what techniques are best for this purpose. This information will be valuable to researchers planning trials of new medications for FTLD, so they can use brain imaging to help decide which drugs show the most promise for treating the disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG032306-05
Application #
8530128
Study Section
Clinical Neuroscience and Neurodegeneration Study Section (CNN)
Program Officer
Hsiao, John
Project Start
2009-09-30
Project End
2014-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
5
Fiscal Year
2013
Total Cost
$1,821,889
Indirect Cost
$123,150
Name
University of California San Francisco
Department
Neurology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Graff-Radford, Jonathan; Madhavan, Malini; Vemuri, Prashanthi et al. (2016) Atrial fibrillation, cognitive impairment, and neuroimaging. Alzheimers Dement 12:391-8
Petersen, Ronald C; Wiste, Heather J; Weigand, Stephen D et al. (2016) Association of Elevated Amyloid Levels With Cognition and Biomarkers in Cognitively Normal People From the Community. JAMA Neurol 73:85-92
Santos-Santos, Miguel A; Mandelli, Maria Luisa; Binney, Richard J et al. (2016) Features of Patients With Nonfluent/Agrammatic Primary Progressive Aphasia With Underlying Progressive Supranuclear Palsy Pathology or Corticobasal Degeneration. JAMA Neurol 73:733-42
Pankov, Aleksandr; Binney, Richard J; Staffaroni, Adam M et al. (2016) Data-driven regions of interest for longitudinal change in frontotemporal lobar degeneration. Neuroimage Clin 12:332-40
Chiong, Winston; Wood, Kristie A; Beagle, Alexander J et al. (2016) Neuroeconomic dissociation of semantic dementia and behavioural variant frontotemporal dementia. Brain 139:578-87
Block, Nikolas R; Sha, Sharon J; Karydas, Anna M et al. (2016) Frontotemporal Dementia and Psychiatric Illness: Emerging Clinical and Biological Links in Gene Carriers. Am J Geriatr Psychiatry 24:107-16
Risacher, Shannon L; McDonald, Brenna C; Tallman, Eileen F et al. (2016) Association Between Anticholinergic Medication Use and Cognition, Brain Metabolism, and Brain Atrophy in Cognitively Normal Older Adults. JAMA Neurol 73:721-32
Naasan, Georges; Rabinovici, Gil D; Ghosh, Pia et al. (2016) Amyloid in dementia associated with familial FTLD: not an innocent bystander. Neurocase 22:76-83
Voyle, N; Kim, M; Proitsi, P et al. (2016) Blood metabolite markers of neocortical amyloid-β burden: discovery and enrichment using candidate proteins. Transl Psychiatry 6:e719
Graff-Radford, Jonathan; Lesnick, Timothy G; Boeve, Bradley F et al. (2016) Predicting Survival in Dementia With Lewy Bodies With Hippocampal Volumetry. Mov Disord 31:989-94

Showing the most recent 10 out of 52 publications