Microglia are the principal innate immune cells of the brain. In Alzheimer's disease (AD) these cells bind ?-amyloid (A?) and accumulate at sites of A? deposition, including senile plaques. Microglial interactions with A? promote a chronic inflammatory response characterized by the production of pro-inflammatory cytokines and chemokines, reactive oxygen and nitrogen species, and complement proteins. This sterile inflammation is maintained by persistent microglial activation by A? and leads to neuronal degeneration and increased A? deposition and therefore promotes disease progression. The receptors that bind A? and the signaling pathways triggered by A? that promote chronic inflammation are not fully understood. Our long-term goals are to identify the molecular mechanisms of microglial activation by A? and the impact of these pathways on AD pathogenesis. We hypothesize that Toll-like receptors (TLR), an evolutionarily ancient family of pattern recognition receptors that detect microbial ligands, initiate and maintain the microglial inflammatory response to A?. This hypothesis is based on preliminary findings that targeted deletion of the TLR signaling adaptor MyD88 abrogates microglial inflammatory responses to A? in vitro and in vivo. In this proposal, we will define the TLRs and co-receptors responsible for initiating this signaling, their impact on microglial inflammatory responses and the implications for disease. Specifically, we will (1) Define the role of TLR ligation and signaling on microglial responses to A? in vitro, (2) Determine the role of A? co-receptors in facilitating TLR signaling, and (3) Determine the impact of A?-TLR signaling on Alzheimer's disease pathology in vivo. Understanding the mechanism(s) of microglial interactions with A? and identifying the receptors involved in these interactions will provide valuable insight into the role of these cells in the pathogenesis of AD and potentially identify therapeutic targets in AD to promote microglial clearance of A? while downregulating their neurotoxic effects.

Public Health Relevance

In Alzheimer's disease (AD), microglial interactions with ?-amyloid peptide promote chronic sterile inflammation that leads to neuronal degeneration, increased ?-amyloid deposition and disease progression. Understanding the mechanisms of microglial interactions with ?-amyloid and identifying the receptors involved in promoting inflammation will provide valuable insight into the role of these cells in the pathogenesis of AD and possibly allow the use of microglia as therapeutic targets for AD by promoting their ability to clear ?-amyloid while downregulating their harmful and neurotoxic effects.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Cellular and Molecular Biology of Glia Study Section (CMBG)
Program Officer
Petanceska, Suzana
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Hickman, Suzanne E; El Khoury, Joseph (2014) TREM2 and the neuroimmunology of Alzheimer's disease. Biochem Pharmacol 88:495-8
Frenkel, Dan; Wilkinson, Kim; Zhao, Lingzhi et al. (2013) Scara1 deficiency impairs clearance of soluble amyloid-* by mononuclear phagocytes and accelerates Alzheimer's-like disease progression. Nat Commun 4:2030
Hickman, Suzanne E; Kingery, Nathan D; Ohsumi, Toshiro K et al. (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896-905
Hickman, Suzanne E; El Khoury, Joseph (2013) The neuroimmune system in Alzheimer's disease: the glass is half full. J Alzheimers Dis 33 Suppl 1:S295-302
Sheedy, Frederick J; Grebe, Alena; Rayner, Katey J et al. (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14:812-20
Wilkinson, Kim; Boyd, Justin D; Glicksman, Marcie et al. (2011) A high content drug screen identifies ursolic acid as an inhibitor of amyloid beta protein interactions with its receptor CD36. J Biol Chem 286:34914-22
Stewart, Cameron R; Stuart, Lynda M; Wilkinson, Kim et al. (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155-61
Seimon, Tracie A; Nadolski, Marissa J; Liao, Xianghai et al. (2010) Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab 12:467-82
Means, Terry K; Mylonakis, Eleftherios; Tampakakis, Emmanouil et al. (2009) Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med 206:637-53