Our long-term aim is to elucidate molecular mechanisms of neural signaling in Drosophila. Here we focus on analysis of mutants with defects in maintenance of neuronal viability. We have discovered several mutations among our collection, including wstd and comt, that exhibit shortened lifespan and age-dependent, progressive neurodegeneration providing us with novel starting points to dissect neuroprotective mechanisms. Our goals are to determine the in vivo roles of the affected proteins using genetic, molecular, biochemical, and histological techniques to analyze how defects in these proteins result in the observed phenotypes. wstd encodes the glycolytic enzyme, triose phosphate isomerase (Tpi) responsible for the interconversion of DHAP (dihydroxyacetone phosphate) and GAP (glyceraldehyde 3-phosphate), only the latter of which is able to continue through glycolysis. Mutations of Tpi in humans result in Triosephosphate isomerase deficiency, characterized by early death and neurodegeneration but the underlying mechanism has remained unclear. We hypothesize that the enzymatic block in Tpi-deficient flies and humans leads to excess accumulation of methylglyoxal (MG), which reacts with target proteins to generate advanced glycation end products (AGEs) causing loss of protein activity, cross-linking, aggregation, and ultimately neuronal death. We propose genetic and biochemical experiments to test and refine this hypothesis. comt, which encodes NSF-1 (N-ethyl- maleimide sensitive fusion protein), exhibits a deficit in lysosomes and accumulation of ubiquitinated protein complexes in parallel with neurodegeneration. We hypothesize that comt is deficient in autophagy. Experiments are proposed to test this hypothesis and to dissect the step(s) in the process that are impaired. Additional mechanisms of neuroprotection will be investigated by phenotypic and molecular analysis of other mutants in our collection that exhibit neurodegeneration. Neuroprotective mechanisms are essential for proper neural communication and their disruption leads to some of the most devastating human neurological disorders. Detailed understanding of these mechanisms is thus of fundamental biological as well as medical importance. Drosophila has already proven to be a potent experimental system for elucidating these mechanisms. Moreover, both wstd and comt have direct links with human neurodegenerative disorders. Consequently, our proposed analyses should have broad biological and medical significance by contributing important new information that will advance our understanding of the underlying molecules and mechanisms that maintain neuronal viability and integrity.

Public Health Relevance

Project Relevance We propose to study the mechanisms underlying neurodegeneration using the fruitfly (Drosophila) as an experimental model. Because neurodegenerative disease is an increasingly important human health concern, these studies will have broad medical significance by providing a better understanding of why neurodegeneration occurs and how it can be prevented.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Cellular and Molecular Biology of Neurodegeneration Study Section (CMND)
Program Officer
Wise, Bradley C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
Schools of Earth Sciences/Natur
United States
Zip Code
Katzenberger, Rebeccah J; Chtarbanova, Stanislava; Rimkus, Stacey A et al. (2015) Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction. Elife 4:
Katzenberger, Rebeccah J; Loewen, Carin A; Bockstruck, R Tayler et al. (2015) A Method to Inflict Closed Head Traumatic Brain Injury in Drosophila. J Vis Exp :e52905
Babcock, Daniel T; Shen, Wei; Ganetzky, Barry (2015) A neuroprotective function of NSF1 sustains autophagy and lysosomal trafficking in Drosophila. Genetics 199:511-22
Babcock, Daniel T; Ganetzky, Barry (2015) Non-cell autonomous cell death caused by transmission of Huntingtin aggregates in Drosophila. Fly (Austin) 9:107-9
Babcock, Daniel T; Ganetzky, Barry (2015) Transcellular spreading of huntingtin aggregates in the Drosophila brain. Proc Natl Acad Sci U S A 112:E5427-33
Babcock, Daniel T; Ganetzky, Barry (2014) An improved method for accurate and rapid measurement of flight performance in Drosophila. J Vis Exp :e51223
Daniels, Richard W; Rossano, Adam J; Macleod, Gregory T et al. (2014) Expression of multiple transgenes from a single construct using viral 2A peptides in Drosophila. PLoS One 9:e100637
Cao, Yang; Chtarbanova, Stanislava; Petersen, Andrew J et al. (2013) Dnr1 mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Proc Natl Acad Sci U S A 110:E1752-60
Katzenberger, Rebeccah J; Loewen, Carin A; Wassarman, Douglas R et al. (2013) A Drosophila model of closed head traumatic brain injury. Proc Natl Acad Sci U S A 110:E4152-9
Miller, Daniel L; Ballard, Shannon L; Ganetzky, Barry (2012) Analysis of synaptic growth and function in Drosophila with an extended larval stage. J Neurosci 32:13776-86

Showing the most recent 10 out of 11 publications