Aging and stress responses are tightly linked~ indeed, most interventions that extend lifespan appear to do so at least in part through potentiation of stress responses. Nevertheless, the genetic and mechanistic basis of this central relationship remains poorly understood. Here we will test the hypothesis that microRNAs (miRNAs) coordinate stress-responsive pathways in response to lifespan-prolonging interventions. We propose the following: To identify critical new miRNAs that link stress responses to aging in C. elegans, we profiled expression of small RNAs during development, aging and in stressed conditions (heat shock, starvation, hypoxia and oxidative stress). Since miRNAs that are differentially regulated during stress are likely to be mechanistic regulators of the stress response, we propose to characterize ten of the most differentially expressed miRNAs and determine their position in the gene-regulatory architecture of stress responses. We will also integrate our previous profiling and functional analyses of aging-associated miRNAs with these results to identify miRNAs that are associated with both stress and aging and test whether these genes provide mechanistic links between these conditions. To investigate network-level roles of microRNAs in regulation of stress and aging, we propose to elucidate the underlying regulatory network of genes and miRNAs involved in aging and stress. In order to identify critical new sets of miRNAs and pathways that link these processes, we have integrated transcription-factor binding site information, with miRNA target predictions to build a preliminary interaction network of the known regulatory relationships between transcription factors, aging- associated miRNAs, and miRNA biogenesis genes. We also propose to determine targets of key miRNAs biochemically via CLIP-seq and RNA-seq in the presence and absence of the miRNA. These data will allow us to improve the known miRNA-mRNA regulatory interaction network. Then, using this network, we will find miRNAs that comprise feedback loops and highly connected interaction nodes. We will test whether these highly connected miRNAs play critical roles in aging, stress responses, or in integrating the two. To identify miRNA mediators of lifespan extension due to dietary restriction. Our preliminary data point to miR-71 and miR-228 as key network nodes connected to pha-4 and skn-1, transcription factors critical for the response to dietary restriction and other stressors. We will characterize the roles of thes miRNAs and use our gene- regulatory network to identify other such candidate miRNAs. We also propose to identify miRNAs differentially expressed in dietary restriction via deep sequencing and include these in our network analysis above. We are uniquely well situated to carry out this work, as the Slack lab combines extensive experience in miRNAs and aging biology with leading expertise in genome-wide small-RNA characterization. MiRNA analogues and antagonists are pharmacologically tractable~ thus identifying critical aging and stress responsive miRNAs in C. elegans may lead directly to lifespan and healthspan-prolonging interventions in humans.

Public Health Relevance

Manipulations that increase longevity in Caenorhabditis elegans and other species often also increase stress resistance~ conversely, mobilizing stress responses can prolong lifespan. These deep connections suggest that insights from stress biology can be relevant for understanding, and ultimately delaying, aging, yet currently, we lack a full understanding of the underlying mechanistic links between these two areas of physiology. Previously, we characterized the role of specific microRNAs in modulating aging in C. elegans~ now we propose to test the hypothesis that microRNAs coordinate stress-responsive pathways in response to lifespan-prolonging interventions and that critical miRNAs link longevity and stress responses.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG033921-16
Application #
9412773
Study Section
Cellular Mechanisms in Aging and Development Study Section (CMAD)
Program Officer
Velazquez, Jose M
Project Start
2009-02-15
Project End
2019-01-31
Budget Start
2018-02-15
Budget End
2019-01-31
Support Year
16
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02215
Zhang, William B; Sinha, Drew B; Pittman, William E et al. (2016) Extended Twilight among Isogenic C. elegans Causes a Disproportionate Scaling between Lifespan and Health. Cell Syst 3:333-345.e4
Salzman, David W; Nakamura, Kotoka; Nallur, Sunitha et al. (2016) miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Nat Commun 7:10954
Pincus, Zachary; Mazer, Travis C; Slack, Frank J (2016) Autofluorescence as a measure of senescence in C. elegans: look to red, not blue or green. Aging (Albany NY) 8:889-98
Smith-Vikos, Thalyana; Liu, Zuyun; Parsons, Christine et al. (2016) A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA). Aging (Albany NY) 8:2971-2987
Stefani, Giovanni; Chen, Xiaowei; Zhao, Hongyu et al. (2015) A novel mechanism of LIN-28 regulation of let-7 microRNA expression revealed by in vivo HITS-CLIP in C. elegans. RNA 21:985-96
de Lencastre, Alexandre; Slack, Frank (2015) Discovery of Novel microRNAs in Aging Caenorhabditis elegans. Methods Mol Biol 1343:235-48
Jiao, Alan L; Slack, Frank J (2014) RNA-mediated gene activation. Epigenetics 9:27-36
Chu, Yu-De; Wang, Wei-Chieh; Chen, Shi-An A et al. (2014) RACK-1 regulates let-7 microRNA expression and terminal cell differentiation in Caenorhabditis elegans. Cell Cycle 13:1995-2009
Smith-Vikos, Thalyana; de Lencastre, Alexandre; Inukai, Sachi et al. (2014) MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors. Curr Biol 24:2238-46
Turner, Michael J; Jiao, Alan L; Slack, Frank J (2014) Autoregulation of lin-4 microRNA transcription by RNA activation (RNAa) in C. elegans. Cell Cycle 13:772-81

Showing the most recent 10 out of 25 publications