The overall goal of these experiments is to reveal a mechanistic basis for the inverse correlation between smoking and Parkinson's disease. The project tests whether chronic exposure to nicotine up-regulates functional nicotinic acetylcholine receptors (nAChRs) in the basal ganglia, changing cell and circuit function. The "cell-specific alpha4 up- regulation" (CSAUR) hypothesis states that the key up-regulated receptors are characterized by a high sensitivity (HS) to nicotine and are therefore mostly of the alpha4beta2* and possibly of the alpha6* subtypes;that cell-specific increases in alpha4* nAChR(s) occur during chronic exposure to nicotine;and that this cell-specific upregulation provides the basis for circuit-based changes in neuronal activity.
Aim 1 uses mouse brain slices containing basal ganglia to detect the distribution of alpha4* receptors, then to determine CSAUR. The studies will employ, where appropriate, quantitative electrophysiological assessment of nAChR function, mouse strains with modified nAChRs, cell labeling, and immunohistochemical techniques. Substantia nigra pars compacta (SNc) will be studied to confirm the absence of up-regulation in these neurons. The hypothesis will be tested that chronic nicotine renders SNc neurons less sensitive to burst firing mediated by GABAA receptor blockade or by NMDA receptor activation. Subthalamic nucleus (STN) will be studied to confirm preliminary data suggesting that it expresses a* receptors. If CSAUR occurs in STN, burst firing will be studied. Medium spiny neurons (MSNs) in dorsal thalamus will be studied to determine whether chronic nicotine changes alpha4* function at the DA terminals. If so, electrochemical detection of DA release will be used. GABAergic interneurons (INs) will be tested for alpha4* receptors, and then for alpha4* up-regulation. If CSAUR is detected, the alpha4*-expressing INs will be identified by anatomy;and the particular subclass of inhibited MSNs will be identified.
In Aim 2, single DA and GABAergic cells will be monitored in basal ganglia of intact animals, to assess effects of chronic nicotine that are revealed when neuronal circuits are intact .
In Aim3, fluorescence will be measured in knock-in mice that express fully functional fluorescent alpha4* receptors. Up-regulation of this fluorescence will be measured in specific cell types. High-resolution subcellular studies with 2-photon microscopy will determine the sub-cellular specificity of alpha4* expression and up-regulation. Understanding the cellular and circuit changes induced by chronic nicotine in basal ganglia could lead to new therapies for Parkinson's disease.

Public Health Relevance

Parkinson's disease is caused by degeneration of nerve cells in the substantia nigra. These experiments are designed to reveal a mechanistic basis for the strong inverse correlation. between smoking and Parkinson's disease. Understanding the cellular and circuit changes induced by chronic nicotine in basal ganglia could lead to new therapies.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MDCN-C (02))
Program Officer
Chen, Wen G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
California Institute of Technology
Schools of Arts and Sciences
United States
Zip Code
Srinivasan, Rahul; Henderson, Brandon J; Lester, Henry A et al. (2014) Pharmacological chaperoning of nAChRs: a therapeutic target for Parkinson's disease. Pharmacol Res 83:20-9
Kobayashi, Atsuko; Parker, Rell L; Wright, Ashley P et al. (2014) Lynx1 supports neuronal health in the mouse dorsal striatum during aging: an ultrastructural investigation. J Mol Neurosci 53:525-36
Henderson, Brandon J; Srinivasan, Rahul; Nichols, Weston A et al. (2014) Nicotine exploits a COPI-mediated process for chaperone-mediated up-regulation of its receptors. J Gen Physiol 143:51-66
Henley, Beverley M; Williams, Brian A; Srinivasan, Rahul et al. (2013) Transcriptional regulation by nicotine in dopaminergic neurons. Biochem Pharmacol 86:1074-83
Miles, Timothy F; Dougherty, Dennis A; Lester, Henry A (2013) The 5-HT3AB receptor shows an A3B2 stoichiometry at the plasma membrane. Biophys J 105:887-98
Srinivasan, Rahul; Richards, Christopher I; Xiao, Cheng et al. (2012) Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response. Mol Pharmacol 81:759-69
Srinivasan, Rahul; Pantoja, Rigo; Moss, Fraser J et al. (2011) Nicotine up-regulates alpha4beta2 nicotinic receptors and ER exit sites via stoichiometry-dependent chaperoning. J Gen Physiol 137:59-79
Xiao, Cheng; Srinivasan, Rahul; Drenan, Ryan M et al. (2011) Characterizing functional ýý6ýý2 nicotinic acetylcholine receptors in vitro: mutant ýý2 subunits improve membrane expression, and fluorescent proteins reveal responsive cells. Biochem Pharmacol 82:852-61
Richards, Christopher I; Srinivasan, Rahul; Xiao, Cheng et al. (2011) Trafficking of alpha4* nicotinic receptors revealed by superecliptic phluorin: effects of a beta4 amyotrophic lateral sclerosis-associated mutation and chronic exposure to nicotine. J Biol Chem 286:31241-9
Miwa, Julie M; Freedman, Robert; Lester, Henry A (2011) Neural systems governed by nicotinic acetylcholine receptors: emerging hypotheses. Neuron 70:20-33

Showing the most recent 10 out of 14 publications