Amyloid-beta peptides of various lengths (i.e. amyloid-beta 42 and 40) and their accumulation in amyloid-beta plaques are known to play a central role in the pathogenesis of Alzheimer's disease. However, amyloid-beta is normally produced in the brain of healthy individuals throughout life. This may present important issues when designing effective and safe therapeutic approaches against Alzheimer's disease (AD). My laboratory has obtained compelling data showing that administration of amyloid-beta 42, when used at low concentrations, presumably neighboring those found in the normal brain, leads to enhancement of long-term potentiation (LTP), a widely studied cellular model of learning and memory, and post-tetanic potentiation, a type of short- term plasticity that is believed to be an indication of presynaptic function. Picomolar concentrations of amyloid- beta 42 were also able to enhance contextual fear memory and reference memory. Finally, preliminary experiments have shown that depletion of endogenously produced amyloid-beta through antibodies against murine amyloid-beta or through siRNA against murine APP dramatically reduced LTP and hippocampal- dependent memory. Thus, the overall hypothesis of this proposal is that amyloid-beta itself is a critical positive-modulator of synaptic plasticity and memory within the normal CNS. The following three specific aims will be investigated: a) to determine if amyloid-beta is a critical positive modulator of LTP and hippocampal-dependent memory;b) to determine if APP metabolism is altered following tetanic stimulation and memory training, promoting the transient generation of increased amounts of amyloid-beta;c) to determine the mechanisms on how amyloid-beta enhances hippocampal synaptic plasticity and memory. The consequences of our findings go beyond their therapeutic implications, having also relevance for studying the AD pathogenesis and normal learning.

Public Health Relevance

Despite amyloid peptides of various lengths are produced in the brain throughout life in normal individuals, it is not known whether they play a physiological role in the normal brain. This may present important issues when designing effective and safe therapeutic approaches against Alzheimer's disease. We will now explore the possibility that amyloid itself is a critical positive-modulator of synaptic plasticity and memory within the normal brain. The consequences of our findings go beyond their therapeutic implications, having also relevance for studying the pathogenesis of Alzheimer's disease. Indeed, the amyloid hypothesis might take advantage of our findings, as understanding the normal function of a molecule is likely to be relevant to pin point how it gains a new and negative function. Finally, our discoveries will contribute to the understanding of normal mechanisms of learning.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG034248-05
Application #
8678807
Study Section
Cell Death and Injury in Neurodegeneration Study Section (CDIN)
Program Officer
Petanceska, Suzana
Project Start
2010-07-01
Project End
2015-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Pathology
Type
Schools of Medicine
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10032
Koppensteiner, Peter; Trinchese, Fabrizio; Fà, Mauro et al. (2016) Time-dependent reversal of synaptic plasticity induced by physiological concentrations of oligomeric A?42: an early index of Alzheimer's disease. Sci Rep 6:32553
Puzzo, Daniela; Gulisano, Walter; Palmeri, Agostino et al. (2015) Rodent models for Alzheimer's disease drug discovery. Expert Opin Drug Discov 10:703-11
Puzzo, D; Gulisano, W; Arancio, O et al. (2015) The keystone of Alzheimer pathogenesis might be sought in A? physiology. Neuroscience 307:26-36
Ricciarelli, Roberta; Puzzo, Daniela; Bruno, Olga et al. (2014) A novel mechanism for cyclic adenosine monophosphate-mediated memory formation: Role of amyloid beta. Ann Neurol 75:602-7
Puzzo, Daniela; Lee, Linda; Palmeri, Agostino et al. (2014) Behavioral assays with mouse models of Alzheimer's disease: practical considerations and guidelines. Biochem Pharmacol 88:450-67
Lee, Linda; Kosuri, Pallav; Arancio, Ottavio (2014) Picomolar amyloid-? peptides enhance spontaneous astrocyte calcium transients. J Alzheimers Dis 38:49-62
Puzzo, Daniela; Arancio, Ottavio (2013) Amyloid-ýý peptide: Dr. Jekyll or Mr. Hyde? J Alzheimers Dis 33 Suppl 1:S111-20
Xing, Luzhou; Salas, Martha; Zhang, Hong et al. (2013) Creation and characterization of BAC-transgenic mice with physiological overexpression of epitope-tagged RCAN1 (DSCR1). Mamm Genome 24:30-43
Teich, Andrew F; Patel, Mitesh; Arancio, Ottavio (2013) A reliable way to detect endogenous murine ýý-amyloid. PLoS One 8:e55647
Teich, Andrew F; Arancio, Ottavio (2012) Is the amyloid hypothesis of Alzheimer's disease therapeutically relevant? Biochem J 446:165-77

Showing the most recent 10 out of 12 publications