Alzheimer's disease (AD) is one of the largest unmet medical need today. Epidemiologic data indicate that this need will mushroom in the coming decade unless new therapeutic options are identified. Pathological and human genetic studies have made substantial progress in supporting an "Amyloid Hypothesis" of AD and efforts to remove amyloid-A? (A?) immunologically, to block A? production by secretases and enhance A? degradation are advancing. However, a cell biological understanding of how A? is toxic for neurons has lagged. Recent studies have focused attention on soluble oligomers of A? as culprits in the disease process in both correlative and functional studies. The neuronal targets by which oligomeric A? mediates neuronal dysfunction are unknown but their identification would provide a novel pathway in drug development. In Preliminary Studies, we have identified the cellular Prion Protein (PrPC) as an A?-oligomer receptor by expression cloning. Synaptic responsiveness in brain slices from young adult PrP null mice is normal, but the A?-oligomer blockade of long-term potentiation (LTP) is absent. Thus, PrPC is a mediator of A?- oligomer induced synaptic dysfunction in vitro. Here, we will determine if the same molecular interaction plays a role in A?-induced memory dysfunction and neurodegeneration. We will determine the requirements for specificity in this interaction and explore downstream signaling pathways. Together, this work holds the promise of validating a novel therapeutic target for AD, one that is based not on A? levels but on preventing the deleterious actions of A?-oligomers on neurons through a specific binding site.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Cellular and Molecular Biology of Neurodegeneration Study Section (CMND)
Program Officer
Petanceska, Suzana
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Schools of Medicine
New Haven
United States
Zip Code
Haas, Laura T; Kostylev, Mikhail A; Strittmatter, Stephen M (2014) Therapeutic molecules and endogenous ligands regulate the interaction between brain cellular prion protein (PrPC) and metabotropic glutamate receptor 5 (mGluR5). J Biol Chem 289:28460-77
Stagi, Massimiliano; Klein, Zoe A; Gould, Travis J et al. (2014) Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B. Mol Cell Neurosci 61:226-40
Nygaard, Haakon B; van Dyck, Christopher H; Strittmatter, Stephen M (2014) Fyn kinase inhibition as a novel therapy for Alzheimer's disease. Alzheimers Res Ther 6:8
Couch, Brian A; Kerrisk, Meghan E; Kaufman, Adam C et al. (2013) Delayed amyloid plaque deposition and behavioral deficits in outcrossed A*PP/PS1 mice. J Comp Neurol 521:1395-408
Um, Ji Won; Strittmatter, Stephen M (2013) Amyloid-* induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease. Prion 7:37-41
Um, Ji Won; Kaufman, Adam C; Kostylev, Mikhail et al. (2013) Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer a? oligomer bound to cellular prion protein. Neuron 79:887-902
Voikar, V; Kulesskaya, N; Laakso, T et al. (2013) LRRTM1-deficient mice show a rare phenotype of avoiding small enclosures--a tentative mouse model for claustrophobia-like behaviour. Behav Brain Res 238:69-78
Chung, Erika; Ji, Yong; Sun, Yanjie et al. (2010) Anti-PrPC monoclonal antibody infusion as a novel treatment for cognitive deficits in an Alzheimer's disease model mouse. BMC Neurosci 11:130
Zhang, Yongfang; Kurup, Pradeep; Xu, Jian et al. (2010) Genetic reduction of striatal-enriched tyrosine phosphatase (STEP) reverses cognitive and cellular deficits in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 107:19014-9
Gimbel, David A; Nygaard, Haakon B; Coffey, Erin E et al. (2010) Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci 30:6367-74

Showing the most recent 10 out of 11 publications