Prevention trials for Alzheimer's disease (AD) require development of biological markers to identify normal (NL) individuals at increased risk for decline. After age, having a 1st degree family history (FH) of late-onset AD is the most significant risk factor for developing AD among NL, especially when a parent is affected. The biological mechanisms through which a parental FH of AD confers risk to the offspring are not known. Using Positron Emission Tomography imaging with 2-[18F]fluoro-2-Deoxy-D-glucose as the tracer (FDG-PET), we demonstrated that NL elderly with a maternal history of AD (FHm) show reductions in the cerebral metabolic rate of glucose (CMRglc) as compared to those with a paternal history of AD (FHp) and those with a negative FH (FH-). CMRglc reductions in FHm involved the same brain regions that are typically hypometabolic in clinical AD patients. Moreover, NL FHm showed significantly higher rates of CMRglc declines in AD regions as compared to FHp and FH-. Our prior work demonstrates that CMRglc reductions occur at the preclinical stages of AD and predict decline from NL cognition to AD. With all that is known about the molecular processes involved in glucose metabolism and the pathophysiology of AD, hypometabolism in NL FHm may be due to a combination of increased oxidative stress from the mitochondria and increased amyloid beta (A?) deposition, which is considered by many the key pathological event in AD. The fact that mitochondrial DNA is exclusively maternally inherited in humans lends support to this hypothesis. A?-related oxidative stress may play a crucial role in the initiation and progression of CMRglc abnormalities in AD, which in turn render synapses more vulnerable to neurodegeneration. The goal of this study is to examine the relationship between CMRglc, A? pathology, and oxidative stress in young NL individuals at risk for AD. We propose to perform a 3-year longitudinal study of ninety-six 25-50 year old NL, divided into 4 FH groups of n=24 subjects each: FH-, FHm, FHp, maternal and paternal FH of AD (FHmp). All subjects will receive clinical, neuropsychological, blood tests, brain MRI, FDG-PET and amyloid-PET (PIB-PET) exams at baseline and follow-up.
Our first aim will be to examine whether NL FHm show reduced CMRglc, increased Ass deposition and increased oxidative stress vs FH- and FHp, and whether the changes in these variables are related.
Our second aim will be to examine whether FHmp show cross-sectional and longitudinal effects comparable to FHm. We will use standardized and quality controlled protocols and there is adequate power for hypothesis testing.

Public Health Relevance

Primary prevention trials for Alzheimer's disease will require accurate identification of normal individuals at increased risk for cognitive decline. We showed that children of AD-affected mothers show reduced brain glucose metabolism in AD-vulnerable regions, which may account for the increased risk. This project will test the hypothesis that hypometabolism in children of AD-mothers is due to a combination of systemically increased oxidative stress from the mitochondria and increasing amyloid-beta deposition.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG035137-04
Application #
8534680
Study Section
Clinical Neuroscience and Neurodegeneration Study Section (CNN)
Program Officer
Hsiao, John
Project Start
2010-08-15
Project End
2015-05-31
Budget Start
2013-08-01
Budget End
2014-05-31
Support Year
4
Fiscal Year
2013
Total Cost
$478,649
Indirect Cost
$139,123
Name
New York University
Department
Psychiatry
Type
Schools of Medicine
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Hohman, Timothy J; Bush, William S; Jiang, Lan et al. (2016) Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium. Neurobiol Aging 38:141-50
Mez, Jesse; Mukherjee, Shubhabrata; Thornton, Timothy et al. (2016) The executive prominent/memory prominent spectrum in Alzheimer's disease is highly heritable. Neurobiol Aging 41:115-21
Spiegel, Jonathan; Pirraglia, Elizabeth; Osorio, Ricardo S et al. (2016) Greater specificity for cerebrospinal fluid P-tau231 over P-tau181 in the differentiation of healthy controls from Alzheimer's disease. J Alzheimers Dis 49:93-100
Ridge, Perry G; Hoyt, Kaitlyn B; Boehme, Kevin et al. (2016) Assessment of the genetic variance of late-onset Alzheimer's disease. Neurobiol Aging 41:200.e13-20
Kamer, Angela R; Fortea, Juan O; Videla, Sebastià et al. (2016) Periodontal disease's contribution to Alzheimer's disease progression in Down syndrome. Alzheimers Dement (Amst) 2:49-57
Karch, Celeste M; Ezerskiy, Lubov A; Bertelsen, Sarah et al. (2016) Alzheimer's Disease Risk Polymorphisms Regulate Gene Expression in the ZCWPW1 and the CELF1 Loci. PLoS One 11:e0148717
Ebbert, Mark T W; Boehme, Kevin L; Wadsworth, Mark E et al. (2016) Interaction between variants in CLU and MS4A4E modulates Alzheimer's disease risk. Alzheimers Dement 12:121-9
Glodzik, Lidia; Rusinek, Henry; Kamer, Angela et al. (2016) Effects of vascular risk factors, statins, and antihypertensive drugs on PiB deposition in cognitively normal subjects. Alzheimers Dement (Amst) 2:95-104
Kamer, Angela R; Pirraglia, Elizabeth; Tsui, Wai et al. (2015) Periodontal disease associates with higher brain amyloid load in normal elderly. Neurobiol Aging 36:627-33
Berti, V; Murray, J; Davies, M et al. (2015) Nutrient patterns and brain biomarkers of Alzheimer's disease in cognitively normal individuals. J Nutr Health Aging 19:413-23

Showing the most recent 10 out of 43 publications