We have a fundamental lack in understanding the mechanism that reduces P-glycoprotein (P-gp) expression and transport activity at the blood-brain barrier in Alzheimer's disease (AD). Lack of this knowledge is a significant clinical problem since it prevents development of an effective therapy to enhance AB clearance from the brain, lower AB brain levels, and thus prevent cognitive decline in AD. The long-term goal of the investigator is to better understand the molecular mechanisms that regulate blood-brain barrier function in neurodegenerative disorders, a goal which may lead to new therapeutic strategies to treat AD. The objectives of this particular application are to identify the mechanism responsible for P-gp reduction in AD, to validate this mechanism as a target to protect P-gp, and to test a novel therapeutic strategy for restoring P-gp. Accomplishing these objectives is expected to reduce A? brain levels and improve cognition in AD. Based on preliminary data, the central hypothesis is that A? mediates proteasomal degradation of P-gp, that blocking proteasomal degradation protects P-gp, and that restoring P-gp levels through PXR activation reduces A? brain burden and improves cognition in mice with AD. The rationale for the proposed research is that identifying the mechanism that reduces brain capillary P-gp and protecting and/or restoring P-gp to improve A? brain clearance will potentially provide novel therapeutic targets to lower A? brain levels in AD. To accomplish the objectives of this application, we will test our central hypothesis by pursuing the following three specific aims: 1) Identify the mechanism of A?-mediated P-gp reduction at the blood-brain barrier. 2) Validate the ubiquitin-proteasome system as a target to protect P-gp in an AD mouse model. 3) Develop a therapeutic strategy to reduce cognitive decline in an AD mouse model.
In Aim 1, we will inhibit the ubiquitin-proteasome system to identify the steps involved in A?-mediated P-gp reduction, and determine expression, transport activity, and ubiquitination of P-gp.
In Aim 2, we will treat hAPP mice with inhibitors of the ubiquitin-proteasome system, monitor P-gp expression, transport activity, and ubiquitination, and measure A? brain levels. We will conduct brain perfusion to assess P-gp activity in vivo and perform tail-flick assays to determine the consequence of changes in P-gp.
In Aim 3, we will con- duct a 2-year PCN-feeding study with hAPP mice to assess the long-term therapeutic effect of PXR-mediated P-gp restoration on AB brain levels. P-gp expression and transport activity, A? brain load, and cognition will be periodically determined. The proposed research is innovative because it focuses on two independent strategies designed specifically to enhance A? clearance from the brain in AD. The proposed research is significant because it holds the promise of two new therapeutic strategies to lower A? brain burden and slow progression of AD. The proposed research is translational because drugs for either strategy, inhibition of the ubiquitin- proteasome system and PXR activation, are currently on the market, and both therapeutic strategies could potentially be translated into the clinic for the treatment of AD patients.

Public Health Relevance

The proposed research is relevant to public health because it will significantly advance understanding of blood-brain barrier function in brain diseases and potentially provide new opportunities for improving treatment of Alzheimer's disease. Worldwide, millions of people are currently affected by Alzheimer's disease and patient numbers will increase tremendously over the next decades. Thus, the proposed research is relevant to the mission of the NIH/NINDS, which is to reduce the burden of neurological disease.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Brain Injury and Neurovascular Pathologies Study Section (BINP)
Program Officer
Petanceska, Suzana
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kentucky
Other Health Professions
Schools of Medicine
United States
Zip Code
Lee, Jennifer; Yanckello, Lucille M; Ma, David et al. (2018) Neuroimaging Biomarkers of mTOR Inhibition on Vascular and Metabolic Functions in Aging Brain and Alzheimer's Disease. Front Aging Neurosci 10:225
Ma, David; Wang, Amy C; Parikh, Ishita et al. (2018) Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep 8:6670
Hartz, Anika M S; Schulz, Julia A; Sokola, Brent S et al. (2018) Isolation of Cerebral Capillaries from Fresh Human Brain Tissue. J Vis Exp :
Parikh, Ishita; Guo, Janet; Chuang, Kai-Hsiang et al. (2016) Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging (Albany NY) 8:2814-2826
Hartz, Anika M S; Zhong, Yu; Wolf, Andrea et al. (2016) A?40 Reduces P-Glycoprotein at the Blood-Brain Barrier through the Ubiquitin-Proteasome Pathway. J Neurosci 36:1930-41
Rempe, Ralf G; Hartz, Anika M S; Bauer, Björn (2016) Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab 36:1481-507
Wolf, Andrea; Bauer, Björn; Abner, Erin L et al. (2016) A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice. PLoS One 11:e0147733
Akkaya, Begum G; Zolnerciks, Joseph K; Ritchie, Tasha K et al. (2015) The multidrug resistance pump ABCB1 is a substrate for the ubiquitin ligase NEDD4-1. Mol Membr Biol 32:39-45
Hartz, Anika M S; Bauer, Björn; Soldner, Emma L B et al. (2012) Amyloid-? contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy. Stroke 43:514-23
Wolf, Andrea; Bauer, Bjorn; Hartz, Anika M S (2012) ABC Transporters and the Alzheimer's Disease Enigma. Front Psychiatry 3:54