Alzheimer's disease (AD), especially late-onset (LOAD) is a complex multifactorial neurodegenerative disease with the possible involvement of several genes. Until 2010, APOE was the only established risk factor for LOAD. However, recent five large genomewide association studies (GWAS) have identified significant associations of LOAD with SNPs in nine additional loci, including, ABCA7, MS4A4, EPHA1, CLU, CR1, PICALM, BIN1, CD2AP and CD33 and all, but CR1 and CD2AP, have been replicated in our GWAS sample. Although GWAS have made significant contribution in uncovering additional genes for LOAD, they are unlikely to identify all the genetic contribution because the commercial GWAS arrays are designed to capture only the common variants with low penetrance to test common disease/common variant hypothesis. On the other hand, rare variants having a higher individual penetrance than common variants that are not captured by GWAS may account for 1/3 of the population attributable risk for common and complex diseases and multiple rare variants may account for many of the observed GWAS signals. Furthermore, GWAS arrays use an indirect approach of association that relies on linkage disequilibrium to detect association signals and rarely the identified significant variants are the causal variants. This may explain the small effect sizes associated with the observed GWAS signals. Here we propose to perform deep resequencing of the seven gene regions implicated in recent GWAS and replicated in our sample and selected additional genes involved in the networks of these seven genes using next-generation sequencing in 1,000 AD cases and controls to identify both common and rare SNPs and replicate them in independent samples. The identification of causal variants in these genes would make a significant contribution in understanding the underlying biological mechanism of LOAD.

Public Health Relevance

Late-onset Alzheimer's disease (LOAD) is a complex multifactorial neurodegenerative disease and a leading cause of dementia among elderly people. Currently there are ~5 million AD cases in the U.S. and it is estimated that by 2050 the number of AD cases would reach to ~16 million, if no medical breakthroughs are found. Thus LOAD is a major public health problem and it is essential to understand the underlying causes so that effective preventative measures could be devised. Recent genome-wide association studies (GWAS) have identified nine new gene regions and seven of them have been replicated in our sample. However, the identified common variants do not seem to be functional. In addition to the common variants these genes may also harbor rare functional variants which were not identified in GWAS. The objective of this study is to resequence the seven gene regions replicated in our large case-control sample and selected additional genes involved in the networks of these seven genes in order to identify causal rare and common variants. The identification of causal variants in these genes would make a significant contribution in understanding the underlying biological mechanism of the disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG041718-03
Application #
8721824
Study Section
Molecular Neurogenetics Study Section (MNG)
Program Officer
Miller, Marilyn
Project Start
2012-09-30
Project End
2017-05-31
Budget Start
2014-07-01
Budget End
2015-05-31
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Genetics
Type
Schools of Public Health
DUNS #
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Hu, Ziheng; Wang, Lirong; Ma, Shifan et al. (2018) Synergism of antihypertensives and cholinesterase inhibitors in Alzheimer's disease. Alzheimers Dement (N Y) 4:542-555
Brainstorm Consortium (see original citation for additional authors) (2018) Analysis of shared heritability in common disorders of the brain. Science 360:
Yan, Qi; Nho, Kwangsik; Del-Aguila, Jorge L et al. (2018) Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Mol Psychiatry :
DeMichele-Sweet, M A A; Weamer, E A; Klei, L et al. (2018) Genetic risk for schizophrenia and psychosis in Alzheimer disease. Mol Psychiatry 23:963-972
Snitz, Beth E; Wang, Tianxiu; Cloonan, Yona Keich et al. (2018) Risk of progression from subjective cognitive decline to mild cognitive impairment: The role of study setting. Alzheimers Dement 14:734-742
Kamboh, M Ilyas (2018) A Brief Synopsis on the Genetics of Alzheimer's Disease. Curr Genet Med Rep 6:133-135
Sims, Rebecca (see original citation for additional authors) (2017) Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nat Genet 49:1373-1384
Mez, Jesse; Chung, Jaeyoon; Jun, Gyungah et al. (2017) Two novel loci, COBL and SLC10A2, for Alzheimer's disease in African Americans. Alzheimers Dement 13:119-129
Ombrello, Michael J; Arthur, Victoria L; Remmers, Elaine F et al. (2017) Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications. Ann Rheum Dis 76:906-913
Karch, Celeste M; Ezerskiy, Lubov A; Bertelsen, Sarah et al. (2016) Alzheimer's Disease Risk Polymorphisms Regulate Gene Expression in the ZCWPW1 and the CELF1 Loci. PLoS One 11:e0148717

Showing the most recent 10 out of 44 publications