Alzheimer's disease (AD) affects a total of 5.3 million individuals in the U.S. alone, making it the 7th leading cause of death and also costing about 172 billion dollars annually. Currently, AD diagnosis is predominantly based on clinical and psychometric assessment. However, diagnosis can only be certain if an autopsy reports the presence of characteristic neuritic ?-amyloid plaques and neurofibrilatory tangles in specific brain regions in an individual with a history of progressive dementia. Thus, there is a significant unmet need for non-invasive objective diagnosis and quantification of pathologies, as well as general assessment of disease progression. The goal of this project is to develop a novel neuroimaging analysis framework that will harness the complementary information from different imaging modalities for effective quantification of disease -induced pathologies, so as to promote early detection for possible treatment and prophylaxis. Achieving this goal requires significant innovation in neuroimage analysis techniques to detect sophisticated yet subtle brain alteration patterns. Accordingly, the specific aims of this project are (Aim 1: Disease Diagnosis) to develop a multimodality multivariate diagnosis technique for accurate identification of individuals who are at risk for AD, (Aim 2: Progress Monitoring) to design a novel multi-task kernel learning framework for prediction and quantification of brain abnormality at various disease stages, and (Aim 3: Evaluation) to assess the developed methods using a large database of elderly subjects, for their diagnostic power in quantifying brain alteration patterns in AD/MCI patients, their predictive power of MCI patients who are at risk for AD, and also their capability in quantifying abnormalities as the disease progresses. We expect, upon successful completion of this project, that the resulting comprehensive, integrated, and effective diagnosis/monitoring framework will be conducive to improving the success of early detection of MCI/AD, as well as other neurological disorders including schizophrenia, autism, and multiple sclerosis. Public Health Relevance Statement: Prior to the appearance of clinical symptomatology, AD undergoes a prodromal phase, lasting from years to decades, with disease pathology or predisposition that is clinically undetectable or uncertain. Thus, identifying individuals who are t risk for AD is critical if disease-modifying treatments are to be effective. For this reason, the neuroimage analysis techniques developed in this project are significantly relevant to public health in that they will help improve accuracy in patient identification and disease monitoring for effective treatment.

Public Health Relevance

Description of Project This project aims to develop an individual-based diagnosis method for early detection and progression monitoring of brain disease by using multimodality imaging and non-imaging data. This is significantly different from the conventional methods that focus on group comparison of brain disease using a single imaging modality or simple combination of multimodality data. These group comparison methods are not able to diagnose and predict brain disease for an individual patient, although they may help identify the effect of disease on brain structures and functions at a group level.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
1R01AG041721-01A1
Application #
8373964
Study Section
Special Emphasis Panel (ZRG1-SBIB-Q (80))
Program Officer
Hsiao, John
Project Start
2012-08-01
Project End
2015-05-31
Budget Start
2012-08-01
Budget End
2013-05-31
Support Year
1
Fiscal Year
2012
Total Cost
$413,404
Indirect Cost
$141,428
Name
University of North Carolina Chapel Hill
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Zhao, Feng; Qiao, Lishan; Shi, Feng et al. (2017) Feature fusion via hierarchical supervised local CCA for diagnosis of autism spectrum disorder. Brain Imaging Behav 11:1050-1060
Yin, Qingbo; Hung, Sheng-Che; Wang, Li et al. (2017) Associations between Tumor Vascularity, Vascular Endothelial Growth Factor Expression and PET/MRI Radiomic Signatures in Primary Clear-Cell-Renal-Cell-Carcinoma: Proof-of-Concept Study. Sci Rep 7:43356
Rekik, Islem; Li, Gang; Yap, Pew-Thian et al. (2017) Joint prediction of longitudinal development of cortical surfaces and white matter fibers from neonatal MRI. Neuroimage 152:411-424
Chen, Xiaobo; Zhang, Han; Lee, Seong-Whan et al. (2017) Hierarchical High-Order Functional Connectivity Networks and Selective Feature Fusion for MCI Classification. Neuroinformatics 15:271-284
Chen, Xiaobo; Zhang, Han; Zhang, Lichi et al. (2017) Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Hum Brain Mapp 38:5019-5034
An, Le; Adeli, Ehsan; Liu, Mingxia et al. (2017) A Hierarchical Feature and Sample Selection Framework and Its Application for Alzheimer's Disease Diagnosis. Sci Rep 7:45269
Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang et al. (2017) Robust multi-atlas label propagation by deep sparse representation. Pattern Recognit 63:511-517
Shen, Dinggang; Wu, Guorong; Suk, Heung-Il (2017) Deep Learning in Medical Image Analysis. Annu Rev Biomed Eng 19:221-248
Zhang, Jun; Liu, Mingxia; Le An et al. (2017) Alzheimer's Disease Diagnosis Using Landmark-Based Features From Longitudinal Structural MR Images. IEEE J Biomed Health Inform 21:1607-1616
Zhang, Yu; Zhang, Han; Chen, Xiaobo et al. (2017) Hybrid High-order Functional Connectivity Networks Using Resting-state Functional MRI for Mild Cognitive Impairment Diagnosis. Sci Rep 7:6530

Showing the most recent 10 out of 213 publications