Mitochondria are multi-faceted organelles in eukaryotic cells that stand at the nexus of energy metabolism, oxidative stress, and apoptosis. Consequently, circumstances (genetics, environmental factors, aging) that result in mitochondrial dysfunction disrupt a multitude of cellular processes that can cause human disease pathology, ranging from heart, skeletal muscle and nerve dysfunction to diabetes, blindness, and deafness. Of course, a major function of mitochondria is to generate ATP through the process of oxidative phosphorylation (OXPHOS). ATP is the main energy currency in cells and tissues that require sustained energy production to perform their physiological function (e.g. muscle, nerves, and major organs such as heart and brain). Mitochondria contain a DNA genome (mtDNA), which in humans encodes thirteen essential protein components of the mitochondrial OXPHOS complexes and is maternally inherited. Knowledge of the unique mechanism of human mtDNA expression is essential to understand how this important cellular organelle functions and contributes to human diseases and age-related pathology. While defining the core factors and mechanisms required has advanced significantly through the efforts of my lab and others, only a handful of mitochondrial factors involved in events downstream of transcription initiation in human mitochondria have been characterized to date and their mechanisms of action are largely unknown. These significant gaps in our knowledge of human mitochondrial gene expression are addressed in this competitive renewal proposal through the following three specific aims: 1) To determine how altering mitochondrial gene expression affects metabolism and provides resistance to diet-induced obesity using the Tfam+/- mouse model, 2) To determine the mechanism of transcriptional activation of """"""""free"""""""" mitochondrial ribosomal protein L12, and 3) To dissect the multiple functions of the Leigh Syndrome protein LRP130 in transcription and post-transcriptional processes in human mitochondria. Altogether the proposed studies are part of a larger continuum and strategy over the last 15 years on this project in my lab, which is to 1) identify new factors involved in human mitochondrial gene regulation, 2) determine their mechanism of action, and 3) to study how they influence cellular physiology and metabolism and contribute to human disease using mouse models. In the current proposal, Aim I is at stage 3 of this process (in vivo studies in mice/disease relevance), while Aims II and III are at stage 2 (determining mechanisms of action of new factors), but also employ a novel strategy for identifying new key players in this important process (i.e. stage 1). Knowledge gained from these studies holds therapeutic promise for mitochondrial disease and age-related pathology based on augmenting mitochondrial gene expression and directly addresses the human disorders obesity and Leigh Syndrome.

Public Health Relevance

Mitochondria are multi-functional components of human cells that are required for energy metabolism and contain DNA (mtDNA) that is inherited from your mother. Many circumstances (genetics, environmental factors, aging) can cause a breakdown of mitochondrial function that results in human disease pathology, ranging from heart, skeletal muscle and nerve dysfunction to diabetes, obesity, and deafness. How the essential genes encoded by mtDNA are regulated in living cells is largely unknown. This gap in our knowledge of mitochondria is addressed in this proposal, completion of which is critical to deciphering how disruptions of mitochondria leads to human diseases, contributes to aging, and could facilitate clinical interventions based on augmenting mtDNA gene expression to increase mitochondrial function.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CB-F (02))
Program Officer
Finkelstein, David B
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Schools of Medicine
New Haven
United States
Zip Code
Nouws, Jessica; Goswami, Arvind V; Bestwick, Megan et al. (2016) Mitochondrial Ribosomal Protein L12 Is Required for POLRMT Stability and Exists as Two Forms Generated by Alternative Proteolysis during Import. J Biol Chem 291:989-97
McKay, Sharen E; Yan, Wayne; Nouws, Jessica et al. (2015) Auditory Pathology in a Transgenic mtTFB1 Mouse Model of Mitochondrial Deafness. Am J Pathol 185:3132-40
Kang, Min-Jong; Yoon, Chang Min; Kim, Bo Hye et al. (2015) Suppression of NLRX1 in chronic obstructive pulmonary disease. J Clin Invest 125:2458-62
Camell, Christina D; Nguyen, Kim Y; Jurczak, Michael J et al. (2015) Macrophage-specific de Novo Synthesis of Ceramide Is Dispensable for Inflammasome-driven Inflammation and Insulin Resistance in Obesity. J Biol Chem 290:29402-13
Thakar, Juilee; Mohanty, Subhasis; West, A Phillip et al. (2015) Aging-dependent alterations in gene expression and a mitochondrial signature of responsiveness to human influenza vaccination. Aging (Albany NY) 7:38-52
Shadel, Gerald S; Horvath, Tamas L (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163:560-9
West, A Phillip; Khoury-Hanold, William; Staron, Matthew et al. (2015) Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520:553-7
Schroeder, Elizabeth A; Shadel, Gerald S (2014) Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan. Mech Ageing Dev 135:41-9
Rongvaux, Anthony; Jackson, Ruaidhrí; Harman, Christian C D et al. (2014) Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159:1563-77
Mannam, Praveen; Shinn, Amanda S; Srivastava, Anup et al. (2014) MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. Am J Physiol Lung Cell Mol Physiol 306:L604-19