by cytokines, hormones and cell adhesion molecules. In addition, we have new observations suggesting that retinoids can accelerate the process of lymphocyte formation and their effects on the bone marrow merit further study. For example, these widely prescribed drugs hold promise as agents for boosting recovery of the immune system. We are combining special knock-in mice with cell sorting, cell culture and transplantation techniques to systematically investigate these and other questions. Our lab discovered that Toll-like receptors (TLR) are expressed on hematopoietic cells, allowing these cells to recognize bacterial/viral products and several important outcomes of this interaction have already been identified. For example, TLR ligands stimulate stem cells to enter cycle and begin differentiating, while myeloid restricted cells complete their maturation. The ligands arrest B cell production and cause lymphocyte progenitors to generate several types of dendritic cells. While these new mechanisms may have survival value, we believe there are also circumstances where stem and progenitor cells need to be protected from such substances. Our lab is using defined culture conditions to study mechanisms associated with an apparent re-programming of lymphoid progenitors. In addition, we are tracking the same phenomena in HSV infected mice. Project Description Page 6

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Cellular and Molecular Immunology - B Study Section (CMIB)
Program Officer
Nasseri, M Faraz
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oklahoma Medical Research Foundation
Oklahoma City
United States
Zip Code
Welner, Robert S; Kincade, Paul W (2014) 9-1-1: HSCs respond to emergency calls. Cell Stem Cell 14:415-6
Satoh, Yusuke; Yokota, Takafumi; Sudo, Takao et al. (2013) The Satb1 protein directs hematopoietic stem cell differentiation toward lymphoid lineages. Immunity 38:1105-15
Zhang, Qingzhao; Iida, Ryuji; Yokota, Takafumi et al. (2013) Early events in lymphopoiesis: an update. Curr Opin Hematol 20:265-72
Shimazu, Tomoyuki; Iida, Ryuji; Zhang, Qingzhao et al. (2012) CD86 is expressed on murine hematopoietic stem cells and denotes lymphopoietic potential. Blood 119:4889-97
Luis, T C; Ichii, M; Brugman, M H et al. (2012) Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 26:414-21
Esplin, Brandt L; Shimazu, Tomoyuki; Welner, Robert S et al. (2011) Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol 186:5367-75
Ichii, Michiko; Oritani, Kenji; Yokota, Takafumi et al. (2010) Stromal cell-free conditions favorable for human B lymphopoiesis in culture. J Immunol Methods 359:47-55
An, Guangyu; Miner, Cathrine A; Nixon, Jamee C et al. (2010) Loss of Bright/ARID3a function promotes developmental plasticity. Stem Cells 28:1560-7
Ichii, Michiko; Oritani, Kenji; Yokota, Takafumi et al. (2010) The density of CD10 corresponds to commitment and progression in the human B lymphoid lineage. PLoS One 5:e12954
Ichii, Michiko; Shimazu, Tomoyuki; Welner, Robert S et al. (2010) Functional diversity of stem and progenitor cells with B-lymphopoietic potential. Immunol Rev 237:10-21

Showing the most recent 10 out of 132 publications