Haemophilus ducreyi is a strict human pathogen that causes chancroid, a genital ulcer disease (GUD) that facilitates the transmission of the human immunodeficiency virus (HIV-1). To study the biology of H. ducreyi, we developed a human challenge model that closely simulates natural infection. During infection, H. ducreyi is found in the hostile environment of an abscess and resists phagocytosis. We found that H. ducreyi had a broad transcriptional response to the host, suggesting that H. ducreyi senses and responds to the host environment. H. ducreyi contains only two systems known to respond to extracytoplasmic stress: the 2- component regulator CpxRA and the alternative sigma factor, RpoE. Several H. ducreyi homologues of CpxRA-specific effectors were upregulated, while many homologues of RpoE-specific effectors were downregulated in pustules, suggesting that that CpxRA and RpoE systems are linked in H. ducreyi and function in a coordinated fashion to respond to stresses mounted by the host. We found that CpxRA controlled the expression of several major virulence determinants of H. ducreyi and that uncontrolled activation of CpxRA impaired the ability of the organism to infect human volunteers. We hypothesize that H. ducreyi senses the host environment via CpxRA and RpoE, that both CpxRA and RpoE function during infection to combat stresses encountered in vivo and control the production of virulence determinants, that constitutively active expressers or deletion mutants in the CpxRA or RpoE systems will be attenuated for virulence and that known or novel virulence determinants will be differentially regulated by CpxRA and RpoE during infection. To test these hypotheses, our specific aims include: 1) evaluation of cpxR, rpoE, rseA and rseC deletion mutants and strains that express constitutively activated CpxR and RpoE for virulence in human volunteers;2) determination of the mechanism(s) underlying the contributions of the CpxRA and RpoE systems to pathogenesis in models relevant to human infection;3) identification of novel virulence determinants controlled by the CpxRA and RpoE pathways and evaluation of their role in infection in the in vivo (Aim1) and in vitro (Aim 2) models. Our proposal offers the unique opportunity to study the contributions of two interrelated stress response systems to the survival of a pathogen in humans, will lead to the identification of novel virulence determinants, and has already led to the development of a novel antimicrobial strategy. As approved by NIAID, the purpose of this revision is to obtain funds to support the human inoculation experiments related to Aims 1 and 3 of the funded application.

Public Health Relevance

Haemophilus ducreyi is a bacterium that causes a genital ulcer disease that facilitates HIV transmission. H. ducreyi turns on the expression of many of its genes when it infects the human host. Our study is designed to examine how H. ducreyi uses stress response systems to adapt to the human host. H. ducreyi is only killed by three classes of antibiotics and is a high priority organism for the development of new therapies. This project should yield targets of vaccines or alternative treatments for H. ducreyi and other bacterial infections.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
3R01AI027863-18S1
Application #
8238075
Study Section
Bacterial Pathogenesis Study Section (BACP)
Program Officer
David, Hagit S
Project Start
2012-02-05
Project End
2014-08-31
Budget Start
2012-02-05
Budget End
2012-08-31
Support Year
18
Fiscal Year
2012
Total Cost
$113,447
Indirect Cost
$40,530
Name
Indiana University-Purdue University at Indianapolis
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Gangaiah, Dharanesh; Labandeira-Rey, Maria; Zhang, Xinjun et al. (2014) Haemophilus ducreyi Hfq contributes to virulence gene regulation as cells enter stationary phase. MBio 5:e01081-13
Gangaiah, Dharanesh; Li, Wei; Fortney, Kate R et al. (2013) Carbon storage regulator A contributes to the virulence of Haemophilus ducreyi in humans by multiple mechanisms. Infect Immun 81:608-17
Labandeira-Rey, Maria; Dodd, Dana; Fortney, Kate R et al. (2011) A Haemophilus ducreyi CpxR deletion mutant is virulent in human volunteers. J Infect Dis 203:1859-65
Bauer, Margaret E; Townsend, Carisa A; Doster, Ryan S et al. (2009) A fibrinogen-binding lipoprotein contributes to the virulence of Haemophilus ducreyi in humans. J Infect Dis 199:684-92
Janowicz, Diane M; Ofner, Susan; Katz, Barry P et al. (2009) Experimental infection of human volunteers with Haemophilus ducreyi: fifteen years of clinical data and experience. J Infect Dis 199:1671-9
Bauer, Margaret E; Fortney, Kate R; Harrison, Alistair et al. (2008) Identification of Haemophilus ducreyi genes expressed during human infection. Microbiology 154:1152-60