Highly Active Antiretroviral Therapy (HAART), defined as the administration of three or more antiretroviral medications in combination, has significantly reduced the morbidity and mortality associated with HIV infection. Although there are currently 26 FDA approved drugs in six different mechanistic classes that are given in various HAART combinations, there is a growing need for new antiviral agents to address the critical issues of resistance and penetration into viral sanctuaries (commonly referred to as privileged compartments). Nucleoside analogues that inhibit the HIV encoded reverse transcriptase (RT) continue to be the cornerstone of antiviral therapy;however, one of the major problems in designing next generation nucleoside analogues with more favorable clinical profiles has been the failure of many of these analogues to be recognized and activated by phosphorylation by host kinases. Since the lack of phosphorylating activity generally occurs at the point of the first or second of the three phosphorylation steps required to convert a nucleoside analogue into a competitive, alternative substrate inhibitor of the RT, it may be possible to circumvent this problem by designing nucleotide diphosphate analogues. Additionally, permeability into privileged compartments may be partially responsible for the current inability of chemotherapy to totally clear a patient of HIV infection and the emergence of resistance. Two important privileged HIV compartments are the central nervous system (CNS) and the gut-associated lymphoid tissue (GALT). Our operating hypothesis is that it is possible to design a next generation antiretroviral drug as a nucleoside mono- or diphosphate scaffold with a more favorable resistance profile and achieve therapeutic concentrations of the activated (triphosphate) analogue in currently undertreated privileged compartments by conjugation with sphingolipid moieties.

Public Health Relevance

Although there are currently 26 FDA approved drugs that are given in various HAART combinations to treat HIV, there is a growing need for new antiviral agents to address the critical issues of resistance and penetration into viral sanctuaries (privileged compartments). Our operating hypothesis is that it is possible to design a next generation antiretroviral drug as a nucleoside mono- or diphosphate scaffold with a more favorable resistance profile and achieve therapeutic concentrations of the activated (triphosphate) analogue in currently undertreated privileged compartments by conjugation with sphingolipid moieties.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI028731-24
Application #
8601162
Study Section
AIDS Discovery and Development of Therapeutics Study Section (ADDT)
Program Officer
Nasr, Mohamed E
Project Start
1989-07-01
Project End
2017-12-31
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
24
Fiscal Year
2014
Total Cost
$376,024
Indirect Cost
$133,301
Name
Emory University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Muthu, Pravin; Chen, Hannah X; Lutz, Stefan (2014) Redesigning human 2'-deoxycytidine kinase enantioselectivity for L-nucleoside analogues as reporters in positron emission tomography. ACS Chem Biol 9:2326-33
Acker, Timothy M; Khatri, Alpa; Vance, Katie M et al. (2013) Structure-activity relationships and pharmacophore model of a noncompetitive pyrazoline containing class of GluN2C/GluN2D selective antagonists. J Med Chem 56:6434-56
Ma, L; Hurwitz, S J; Shi, J et al. (1999) Pharmacokinetics of the antiviral agent beta-D-2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine in rhesus monkeys. Antimicrob Agents Chemother 43:381-4
Abobo, C V; Ni, L; Schinazi, R F et al. (1994) Pharmacokinetics of 2',3'-dideoxy-5-fluoro-3'-thiacytidine in rats. J Pharm Sci 83:96-9
Schinazi, R F; Lloyd Jr, R M; Nguyen, M H et al. (1993) Characterization of human immunodeficiency viruses resistant to oxathiolane-cytosine nucleosides. Antimicrob Agents Chemother 37:875-81
Shewach, D S; Liotta, D C; Schinazi, R F (1993) Affinity of the antiviral enantiomers of oxathiolane cytosine nucleosides for human 2'-deoxycytidine kinase. Biochem Pharmacol 45:1540-3
Mathez, D; Schinazi, R F; Liotta, D C et al. (1993) Infectious amplification of wild-type human immunodeficiency virus from patients' lymphocytes and modulation by reverse transcriptase inhibitors in vitro. Antimicrob Agents Chemother 37:2206-11
Schinazi, R F; McMillan, A; Cannon, D et al. (1992) Selective inhibition of human immunodeficiency viruses by racemates and enantiomers of cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine. Antimicrob Agents Chemother 36:2423-31
Schinazi, R F; Chu, C K; Peck, A et al. (1992) Activities of the four optical isomers of 2',3'-dideoxy-3'-thiacytidine (BCH-189) against human immunodeficiency virus type 1 in human lymphocytes. Antimicrob Agents Chemother 36:672-6
Doong, S L; Tsai, C H; Schinazi, R F et al. (1991) Inhibition of the replication of hepatitis B virus in vitro by 2',3'-dideoxy-3'-thiacytidine and related analogues. Proc Natl Acad Sci U S A 88:8495-9