Highly Active Antiretroviral Therapy (HAART), defined as the administration of three or more antiretroviral medications in combination, has significantly reduced the morbidity and mortality associated with HIV infection. Although there are currently 26 FDA approved drugs in six different mechanistic classes that are given in various HAART combinations, there is a growing need for new antiviral agents to address the critical issues of resistance and penetration into viral sanctuaries (commonly referred to as privileged compartments). Nucleoside analogues that inhibit the HIV encoded reverse transcriptase (RT) continue to be the cornerstone of antiviral therapy; however, one of the major problems in designing next generation nucleoside analogues with more favorable clinical profiles has been the failure of many of these analogues to be recognized and activated by phosphorylation by host kinases. Since the lack of phosphorylating activity generally occurs at the point of the first or second of the three phosphorylation steps required to convert a nucleoside analogue into a competitive, alternative substrate inhibitor of the RT, it may be possible to circumvent this problem by designing nucleotide diphosphate analogues. Additionally, permeability into privileged compartments may be partially responsible for the current inability of chemotherapy to totally clear a patient of HIV infection and the emergence of resistance. Two important privileged HIV compartments are the central nervous system (CNS) and the gut-associated lymphoid tissue (GALT). Our operating hypothesis is that it is possible to design a next generation antiretroviral drug as a nucleoside mono- or diphosphate scaffold with a more favorable resistance profile and achieve therapeutic concentrations of the activated (triphosphate) analogue in currently undertreated privileged compartments by conjugation with sphingolipid moieties.

Public Health Relevance

Although there are currently 26 FDA approved drugs that are given in various HAART combinations to treat HIV, there is a growing need for new antiviral agents to address the critical issues of resistance and penetration into viral sanctuaries (privileged compartments). Our operating hypothesis is that it is possible to design a next generation antiretroviral drug as a nucleoside mono- or diphosphate scaffold with a more favorable resistance profile and achieve therapeutic concentrations of the activated (triphosphate) analogue in currently undertreated privileged compartments by conjugation with sphingolipid moieties.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI028731-27
Application #
9186976
Study Section
AIDS Discovery and Development of Therapeutics Study Section (ADDT)
Program Officer
Nasr, Mohamed E
Project Start
1989-07-01
Project End
2017-12-31
Budget Start
2017-01-01
Budget End
2017-12-31
Support Year
27
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Emory University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Giesler, Kyle E; Liotta, Dennis C (2016) Next-Generation Reduction Sensitive Lipid Conjugates of Tenofovir: Antiviral Activity and Mechanism of Release. J Med Chem 59:10244-10252
Liotta, Dennis C; Painter, George R (2016) Discovery and Development of the Anti-Human Immunodeficiency Virus Drug, Emtricitabine (Emtriva, FTC). Acc Chem Res 49:2091-2098
Muthu, Pravin; Lutz, Stefan (2016) Quantitative Detection of Nucleoside Analogues by Multi-enzyme Biosensors using Time-Resolved Kinetic Measurements. ChemMedChem 11:660-6
Kim, Michelle B; Giesler, Kyle E; Tahirovic, Yesim A et al. (2016) CCR5 receptor antagonists in preclinical to phase II clinical development for treatment of HIV. Expert Opin Investig Drugs 25:1377-1392
Giesler, Kyle E; Marengo, Jose; Liotta, Dennis C (2016) Reduction Sensitive Lipid Conjugates of Tenofovir: Synthesis, Stability, and Antiviral Activity. J Med Chem 59:7097-110
Cox, Bryan D; Prosser, Anthony R; Sun, Yongnian et al. (2015) Pyrazolo-Piperidines Exhibit Dual Inhibition of CCR5/CXCR4 HIV Entry and Reverse Transcriptase. ACS Med Chem Lett 6:753-7
Zhao, Huanyu; Prosser, Anthony R; Liotta, Dennis C et al. (2015) Discovery of novel N-aryl piperazine CXCR4 antagonists. Bioorg Med Chem Lett 25:4950-5
Cox, Bryan D; Prosser, Anthony R; Katzman, Brooke M et al. (2014) Anti-HIV small-molecule binding in the peptide subpocket of the CXCR4:CVX15 crystal structure. Chembiochem 15:1614-20
Muthu, Pravin; Chen, Hannah X; Lutz, Stefan (2014) Redesigning human 2'-deoxycytidine kinase enantioselectivity for L-nucleoside analogues as reporters in positron emission tomography. ACS Chem Biol 9:2326-33
Truax, Valarie M; Zhao, Huanyu; Katzman, Brooke M et al. (2013) Discovery of tetrahydroisoquinoline-based CXCR4 antagonists. ACS Med Chem Lett 4:1025-30

Showing the most recent 10 out of 19 publications