Giardia lamblia, an ancient flagellated protist, is an infectious pathogen that causes diarrheal diseases throughout the world and the most common cause of water-borne outbreaks of diarrhea in the United States. Among the many unique biological features of this pathogen, the unusually short 5'-untranslated region (UTR) of 0 to 14 nucleotides in the mRNAs is perhaps the most intriguing, because a 5'-UTR of less than 20 nucleotides is known to cause leaky ribosomal scanning resulting in erroneous and inefficient protein synthesis in other eukaryotes. In our analysis of an internal ribosomal entry site (IRES) in the Giardia-virus transcript, we identified the AUG start codon at the center of an unstructured 31 nucleotide stretch between two stem-loops, suggesting a direct recruitment of small ribosomal subunit onto the AUG codon without ribosomal scanning. The absence of initiation factors eIF4G, eIF4B and eIF4H from Giardia further supports such a postulation. Expression of capped reporter transcripts in Giardia indicates that a 5'-UTR of 1 to 9 nucleotides results in optimal translation, whereas a 5'-UTR going beyond 14 nucleotides decreases the translation efficiency with its increasing length. When multiple AUGs are present, it is invariably the first one closest to the cap that initiates translation. It is thus clear that ribosomal scanning is absent from Giardia and a simple cap-N-AUG is apparently adequate for starting the formation of a translation initiation complex. In the next granting period, we plan to thoroughly characterize this unique complex with the anticipation that its distinctive properties will make it an attractive target for anti-giardiasis chemotherapy. We shall also look into the likely simple complex that initiates translation from the viral IRES and use it as a simple model for an in-depth understanding of the mechanism of translation initiation in a eukaryote. Furthermore, Giardia is known to contain a substantial amount of small antisense RNAs, but the RNA interference machinery is apparently missing from this organism. We plan to explore the possible presence of a microRNA (miRNA)-mediated translation repression in Giardia by first identifying the potential miRNAs and their probable targets and then testing the possible miRNA inhibition of translation of the target mRNA. It is anticipated that fulfillment of these three aims listed in this application will immensely advance our understanding of the regulation of translation in this ancient organism and provide opportunities for therapeutic attack on the disease it causes. PROJECT NARRATIVE: Giardia lamblia is an infectious pathogen that causes diarrheal diseases throughout the world and has been classified by the U.S. Government as one of the potential agents for bioterrorism. Our research on this pathogen has indicated that it may have a very simple machinery for protein synthesis that does not require an un-translated region at the beginning end of messenger RNA to allow ribosomes to scan for the appropriate initiating point for protein synthesis. This remarkably simple mechanism of initiating protein synthesis could provide a good opportunity for selective killing of Giardia without affecting the human host. We are thus planning on identifying this initiating protein complex for protein synthesis in Giardia and eventually targeting it for selective inhibition. We have also accumulated enough evidence to suggest that some of the peculiar small antisense RNAs in Giardia may play the crucial function of microRNA in regulating protein synthesis. We intend to verify this interesting possibility and further develop it into another opportunity for anti-giardiasis chemotherapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI030475-18
Application #
7766289
Study Section
Pathogenic Eukaryotes Study Section (PTHE)
Program Officer
Mcgugan, Glen C
Project Start
1991-01-01
Project End
2012-02-29
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
18
Fiscal Year
2010
Total Cost
$450,340
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Saraiya, Ashesh A; Li, Wei; Wu, Jesse et al. (2014) The microRNAs in an ancient protist repress the variant-specific surface protein expression by targeting the entire coding sequence. PLoS Pathog 10:e1003791
Li, Wei; Saraiya, Ashesh A; Wang, Ching C (2013) Experimental verification of the identity of variant-specific surface proteins in Giardia lamblia trophozoites. MBio 4:e00321-13
Saraiya, Ashesh A; Li, Wei; Wang, Ching C (2013) Transition of a microRNA from repressing to activating translation depending on the extent of base pairing with the target. PLoS One 8:e55672
Li, Wei; Saraiya, Ashesh A; Wang, Ching C (2012) The profile of snoRNA-derived microRNAs that regulate expression of variant surface proteins in Giardia lamblia. Cell Microbiol 14:1455-73
Saraiya, Ashesh A; Li, Wei; Wang, Ching C (2011) A microRNA derived from an apparent canonical biogenesis pathway regulates variant surface protein gene expression in Giardia lamblia. RNA 17:2152-64
Garlapati, Srinivas; Saraiya, Ashesh A; Wang, Ching C (2011) A La autoantigen homologue is required for the internal ribosome entry site mediated translation of giardiavirus. PLoS One 6:e18263
Li, Wei; Saraiya, Ashesh A; Wang, Ching C (2011) Gene regulation in Giardia lambia involves a putative microRNA derived from a small nucleolar RNA. PLoS Negl Trop Dis 5:e1338
Garlapati, Srinivas; Wang, Ching C (2009) Giardiavirus internal ribosome entry site has an apparently unique mechanism of initiating translation. PLoS One 4:e7435
Saraiya, Ashesh A; Wang, Ching C (2008) snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog 4:e1000224
Li, Lei; Wang, Ching C (2006) A likely molecular basis of the susceptibility of Giardia lamblia towards oxygen. Mol Microbiol 59:202-11

Showing the most recent 10 out of 33 publications