Toxoplasma gondii is a widespread parasite of domestic and wild animals that also commonly infects humans, where it is an important cause of disease in immunocompromised individuals. T. gondii is also a model for many biological features are conserved in other less-easily studied apicomplexan parasites such as Cryptosporidium and Plasmodium (malaria). For example, this group of parasites shares common pathways for protein secretion, motility, and host cell invasion: adaptations that are responsible for the success of these intracellular parasites. The long-term goal of our studies is to elucidate the molecular mechanisms that regulate these conserved pathways in apicomplexan parasites and to define how these adaptations lead to intracellular parasitism. Previous studies have demonstrated the role of actin-based motility in cell invasion, and shown that this process facilitates tissue migration and contributes to pathogenesis. Motility and cell invasion also require calcium-mediated secretion of micronemal proteins, which bind to specific receptors on the host cell or substratum, thus providing traction. The cytoplasmic domains of micronemal proteins link to the motor complex within the parasite, thus bridging substrate attachment with force generation. In the proposed studies, we will define the molecular mechanisms that control three important steps in the function of microneme proteins including, calcium-mediated release, translocation via the motor complex, and proteolytic processing. Importantly, these molecular components and signaling pathways are not found in the host cell, they have been shown to be essential in the parasite using pharmacological and/or genetic analyses, and they are conserved among apicomplexan parasites. Elucidation of the molecular mechanisms that control these events will lead to an increased understanding of unique adaptations that are essential for survival of apicomplexan parasites. They may also lead to improved therapeutic interventions to combat these important pathogens.

Public Health Relevance

Our studies are designed to elucidate the molecular mechanisms that control protein secretion and motility in apicomplexan parasites. The proposed studies will be conducted using T. gondii, which is an important opportunistic pathogen and NIAID category B Biodefense agent. T. gondii is also a laboratory model for other less easily studied parasites such as Plasmodium and Cryptosporidium, which share these same biological pathways. Because these pathways are essential and unique to these parasites, defining their molecular components and regulatory features may enable future development of new treatments for parasitic diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI034036-21
Application #
8453363
Study Section
Special Emphasis Panel (ZRG1-IDM-M (02))
Program Officer
Mcgugan, Glen C
Project Start
1993-04-19
Project End
2015-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
21
Fiscal Year
2013
Total Cost
$383,653
Indirect Cost
$122,080
Name
Washington University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Shen, Bang; Buguliskis, Jeffrey S; Lee, Tobie D et al. (2014) Functional analysis of rhomboid proteases during Toxoplasma invasion. MBio 5:e01795-14
Alaganan, Aditi; Fentress, Sarah J; Tang, Keliang et al. (2014) Toxoplasma GRA7 effector increases turnover of immunity-related GTPases and contributes to acute virulence in the mouse. Proc Natl Acad Sci U S A 111:1126-31
Shen, Bang; Sibley, L David (2014) Toxoplasma aldolase is required for metabolism but dispensable for host-cell invasion. Proc Natl Acad Sci U S A 111:3567-72
Shen, Bang; Brown, Kevin M; Lee, Tobie D et al. (2014) Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. MBio 5:e01114-14
Lourido, Sebastian; Jeschke, Grace R; Turk, Benjamin E et al. (2013) Exploiting the Unique ATP-Binding Pocket of Toxoplasma Calcium-Dependent Protein Kinase 1 To Identify Its Substrates. ACS Chem Biol :
Sibley, L David (2013) The roles of intramembrane proteases in protozoan parasites. Biochim Biophys Acta 1828:2908-15
Lourido, Sebastian; Shuman, Joel; Zhang, Chao et al. (2010) Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 465:359-62
Miranda, Kildare; Pace, Douglas A; Cintron, Roxana et al. (2010) Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Mol Microbiol 76:1358-75
Sibley, L David (2010) How apicomplexan parasites move in and out of cells. Curr Opin Biotechnol 21:592-8
Behnke, Michael S; Wootton, John C; Lehmann, Margaret M et al. (2010) Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PLoS One 5:e12354

Showing the most recent 10 out of 53 publications