This competitive renewal will build upon our previous work on the role of chemokines and their receptors in airway inflammation. Children that had experienced severe responses to RSV infections often progress into developing long-term pulmonary problems. In addition to pediatric populations, recent evidence has indicated that there is an unknown and relatively unexplored relationship to pulmonary disease in adult populations, including those with asthma and COPD. This renewal application will focus on the role of specific chemokine receptors and their ligands in RSV infection as well as the effects of RSV on exacerbation of cockroach allergen induced disease. Our hypothesis for this proposal is that RSV infection causes airways disease via the activation of CD8+ T cell responses dependent upon CCR1-mediated mechanisms, whereas resolution of disease relies upon the activation of CxCR3-mediated mechanisms. We have designed experiments using 3 specific aims to test our hypothesis and to identify the mechanisms of disease progression.
These specific aims i nclude: I. To determine what role CCR1+ T lymphocytes have on RSV-induced disease and in exacerbation of allergic airway disease;II. To establish the mechanism of CxCR3+ and its ligands in the immune response leading to the resolution of RSV-induced disease, and III. To identify the differential role of chemokines for DC subset, pDC vs. cDC, trafficking to the lungs and activation leading to altered pulmonary responses. Our studies will examine both a primary RSV-induced response as well as RSV-induced exacerbation of allergic airway disease. Determining the mechanisms that drive the early responses to RSV and mediate or alleviate severe disease will offer an excellent opportunity to target the early manifestations that have long-term detrimental effects in children, and possibly aid in attenuating progression into severe pulmonary disease. Our models have now been well characterized and allow our studies to address the cell populations involved and the relevant mechanisms that drive the detrimental responses. We will extend our hypothesis to include that CCR1+ CD8 T cells are a significant source of Th2 cytokines, especially IL-13, that lead to exacerbated allergic airway disease. The mechanism of the recruitment of CCR1+ CD8 T cells will center on the induced expression of CCR1 ligands, especially CCL5, within the airways of RSV-infected hosts. We have now also provided novel data that has identified that CxCR3-mediated mechanisms induce a critical anti-viral response via recruitment and activation of important innate cells especially plasmacytoid dendritic cells. The use of cellular transfer experiments with specific animals deficient in targeted molecules will enhance our ability to define the particular cellular mechanisms in vivo during a complex immune response. These mechanisms may be similar to those that are involved in infants, where RSV-infected children often progress into having longterm pulmonary problems and in asthmatics for exacerbated disease.

Public Health Relevance

The coordinated production of chemokines during pulmonary inflammation leads to the recruitment of various leukocytes into the lung interstium and airway. Identifying chemokine mediators as well as the relevant receptor during allergic and viral disease may be important for identifying therapeutics targets for treating chronic airway disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI036302-15
Application #
8196891
Study Section
Lung Cellular, Molecular, and Immunobiology Study Section (LCMI)
Program Officer
Minnicozzi, Michael
Project Start
1996-05-01
Project End
2012-11-30
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
15
Fiscal Year
2012
Total Cost
$364,793
Indirect Cost
$119,768
Name
University of Michigan Ann Arbor
Department
Pathology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Sun, L; Cornell, T T; LeVine, A et al. (2013) Dual role of interleukin-10 in the regulation of respiratory syncitial virus (RSV)-induced lung inflammation. Clin Exp Immunol 172:263-79
Reed, Michelle; Morris, Susan H; Jang, Sihyug et al. (2013) Autophagy-inducing protein beclin-1 in dendritic cells regulates CD4 T cell responses and disease severity during respiratory syncytial virus infection. J Immunol 191:2526-37
Petersen, Bryan C; Budelsky, Alison L; Baptist, Alan P et al. (2012) Interleukin-25 induces type 2 cytokine production in a steroid-resistant interleukin-17RB+ myeloid population that exacerbates asthmatic pathology. Nat Med 18:751-8
Morris, Susan; Swanson, Michele S; Lieberman, Andrew et al. (2011) Autophagy-mediated dendritic cell activation is essential for innate cytokine production and APC function with respiratory syncytial virus responses. J Immunol 187:3953-61
Mukherjee, Sumanta; Lindell, Dennis M; Berlin, Aaron A et al. (2011) IL-17-induced pulmonary pathogenesis during respiratory viral infection and exacerbation of allergic disease. Am J Pathol 179:248-58
Lindell, Dennis M; Morris, Susan B; White, Maria P et al. (2011) A novel inactivated intranasal respiratory syncytial virus vaccine promotes viral clearance without Th2 associated vaccine-enhanced disease. PLoS One 6:e21823
Mukherjee, Sumanta; Lukacs, Nicholas W (2010) Association of IL-13 in respiratory syncytial virus-induced pulmonary disease: still a promising target. Expert Rev Anti Infect Ther 8:617-21
Nagarkar, Deepti R; Bowman, Emily R; Schneider, Dina et al. (2010) Rhinovirus infection of allergen-sensitized and -challenged mice induces eotaxin release from functionally polarized macrophages. J Immunol 185:2525-35
Tregoning, John S; Pribul, Philippa K; Pennycook, Alasdair M J et al. (2010) The chemokine MIP1alpha/CCL3 determines pathology in primary RSV infection by regulating the balance of T cell populations in the murine lung. PLoS One 5:e9381
Kallal, Lara E; Schaller, Matthew A; Lindell, Dennis M et al. (2010) CCL20/CCR6 blockade enhances immunity to RSV by impairing recruitment of DC. Eur J Immunol 40:1042-52

Showing the most recent 10 out of 15 publications