The symptoms of an allergic response are associated with the level of IgE. However, the exact role of IgE in an allergic response is not well defined. Therefore, understanding how the IgE response is regulated will hasten the development of therapeutic interventions to keep an allergic response manageable. While immune factors that regulate the number of B cells that produce IgE through class switch recombination are well-characterized, little is known about the intrinsic and extrinsic factors that regulate the amount of IgE produced by a B cell at the level of mature IgE transcription. The goal of this research project is two-fold. First, we propose to identify the mechanism by which stimulation of the ?AR on a B cell by the neurotransmitter norepinephrine (NE) participates in an IgE response. And second, we propose to use the modulatory effect induced by ?AR stimulation on a B cell to help identify new, and clarify accepted, mechanisms by which the IgE response is regulated intrinsically in the absence of ?AR stimulation. Our laboratory showed that 22AR stimulation on a B cell participates in a normal IgE response in vivo, and that the addition of NE or a ?AR agonist to a culture of activated B cells increases the level of IgE produced, without affecting class switch recombination (CSR), through a mechanism that appears to inactivate Hematopoetic protein tyrosine phosphatase (HePTP) and enhance p38 MAPK phosphorylation to mediate an increase in ADAM10, which cleaves membrane CD23 to a soluble form. Thus far, ?AR mediated regulation of HePTP to control p38 MAPK phosphorylation has not been studied in a B cell and appears to be unique to IgE regulation. Also, the basic immunological mechanism that links p38 MAPK activation to ADAM10 expression and regulation of its cleavage of sCD23, which mediates regulation of IgE, remains unknown. We propose to test the hypothesis that ?AR stimulation on an activated B cell regulates a protein tyrosine phosphatase to augment the level of activation- induced signaling pathways to promote an increase in the rate of mature IgE transcription. The relevance of testing our hypothesis is that the findings will define novel signaling intermediates unique to IgE production, which may then be targeted by therapeutics to diminish an IgE-mediated allergic response, and may possibly explain why long-term conventional ?AR agonist therapy and/or stress exacerbate an allergic episode.

Public Health Relevance

IgE is associated with an allergic response. Stress is known to increase the severity of an allergic response. We propose to study how a neurotransmitter released by the nervous system during stress affects the production of IgE, so that we can develop drugs to help individuals that respond adversely.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI037326-20
Application #
8265589
Study Section
Special Emphasis Panel (ZRG1-III-B (09))
Program Officer
Johnson, David R
Project Start
1994-09-01
Project End
2014-05-31
Budget Start
2012-06-01
Budget End
2014-05-31
Support Year
20
Fiscal Year
2012
Total Cost
$367,538
Indirect Cost
$122,513
Name
Ohio State University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Padro, Caroline J; Sanders, Virginia M (2014) Neuroendocrine regulation of inflammation. Semin Immunol 26:357-68
Padro, Caroline J; Shawler, Todd M; Gormley, Matthew G et al. (2013) Adrenergic regulation of IgE involves modulation of CD23 and ADAM10 expression on exosomes. J Immunol 191:5383-97
Lucas, Christopher R; Cordero-Nieves, Hector M; Erbe, Robert S et al. (2013) Prohibitins and the cytoplasmic domain of CD86 cooperate to mediate CD86 signaling in B lymphocytes. J Immunol 190:723-36
Sanders, Virginia M (2012) The beta2-adrenergic receptor on T and B lymphocytes: do we understand it yet? Brain Behav Immun 26:195-200
McAlees, Jaclyn W; Smith, Laura T; Erbe, Robert S et al. (2011) Epigenetic regulation of beta2-adrenergic receptor expression in T(H)1 and T(H)2 cells. Brain Behav Immun 25:408-15
Lucin, Kurt M; Sanders, Virginia M; Popovich, Phillip G (2009) Stress hormones collaborate to induce lymphocyte apoptosis after high level spinal cord injury. J Neurochem 110:1409-21
McAlees, Jaclyn W; Sanders, Virginia M (2009) Hematopoietic protein tyrosine phosphatase mediates beta2-adrenergic receptor-induced regulation of p38 mitogen-activated protein kinase in B lymphocytes. Mol Cell Biol 29:675-86