The principal investigator is interested in the mechanisms by which human pathogenic viruses replicate and establish chronic infections. For the past five years, such interests have been directed toward studies of the replication of hepatitis delta virus (HDV). This subviral human pathogen establishes acute and chronic infections of the liver and uses a helper, hepatitis B virus (HBV), to provide envelope proteins needed for virus assembly. The 25 million carriers worldwide who are chronically infected with HDV suffer a greater incidence of active hepatitis, liver cirrhosis and hepatocellular carcinoma than do those infected with the helper virus alone. The mechanisms responsible for such HDV-associated pathogenicity remain poorly understood and there are currently no effective treatments for HDV-infected individuals. A more detailed understanding of the molecular details involved in HDV replication will be essential if such antiviral therapies are to be developed. In addition to its clinical importance, HDV is also of scientific significance. Unlike all other infectious agents of animals, HDV contains a circular, single-stranded RNA genome that encodes ribozymes. These ribozymes self-cleave multimeric replication intermediates into unit-length species and the resulting termini are joined in a ligation reaction to generate the monomeric circular species. HDV also expresses a protein, the delta antigen, that binds viral RNA to form a ribonucleoprotein (RNP) complex. Like the RNA processing reactions, both the assembly of this RNP and its subsequent incorporation into HBV envelope particles represent essential steps in the viral life cycle that are logical targets for antiviral intervention. Both biochemical and genetic methods will be used in an effort to otter understand the process by which the delta antigen specifically identifies and assembles on its target RNA. Additional experiments are proposed to determine the domain within the helper virus envelope protein responsible for RNP packaging. This will be accomplished by making hybrids with a relative of HBV, duck hepatitis B virus, which is unable to package the HDV RNP. Such experiments may also enable the development of a new animal model useful for the study of HDV pathogenesis. Finally, the principal investigator has previously established a role for host-specific factors in the processing of HDV RNA. To better understand their role in both HDV and host RNA maturation, these factors will be cloned and biochemically characterized.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Experimental Virology Study Section (EVR)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Tufts University
Schools of Medicine
United States
Zip Code
O'Malley, Brendan; Lazinski, David W (2005) Roles of carboxyl-terminal and farnesylated residues in the functions of the large hepatitis delta antigen. J Virol 79:1142-53
Sato, Shuji; Cornillez-Ty, Cromwell; Lazinski, David W (2004) By inhibiting replication, the large hepatitis delta antigen can indirectly regulate amber/W editing and its own expression. J Virol 78:8120-34
Cornillez-Ty, Cromwell T; Lazinski, David W (2003) Determination of the multimerization state of the hepatitis delta virus antigens in vivo. J Virol 77:10314-26
Wong, Swee Kee; Sato, Shuji; Lazinski, David W (2003) Elevated activity of the large form of ADAR1 in vivo: very efficient RNA editing occurs in the cytoplasm. RNA 9:586-98
O'Malley, Brendan; Lazinski, David (2002) A hepatitis B surface antigen mutant that lacks the antigenic loop region can self-assemble and interact with the large hepatitis delta antigen. J Virol 76:10060-3
Wong, Swee Kee; Lazinski, David W (2002) Replicating hepatitis delta virus RNA is edited in the nucleus by the small form of ADAR1. Proc Natl Acad Sci U S A 99:15118-23
Sato, S; Wong, S K; Lazinski, D W (2001) Hepatitis delta virus minimal substrates competent for editing by ADAR1 and ADAR2. J Virol 75:8547-55
Wong, S K; Sato, S; Lazinski, D W (2001) Substrate recognition by ADAR1 and ADAR2. RNA 7:846-58
Reid, C E; Lazinski, D W (2000) A host-specific function is required for ligation of a wide variety of ribozyme-processed RNAs. Proc Natl Acad Sci U S A 97:424-9