HIV/AIDS continues to be a major threat to human health. The use of combinations of small molecule drugs in highly active anti-retroviral therapy (HAART) to stop or thwart HIV propagation ahs had a major impact on delaying the progression from HIV-1 infection to the development of AIDS. Despite this progress, there are problems associated with a lifelong use of anti-viral drug therapy. These include toxicity, the emergence of virus resistant to multiple drugs, and the cost of a daily medication. The proposed studies take advantage of recent advances in gene therapy for the treatment of HIV-1 infection. Gene therapy of human blood progenitor cells can be considered as a potential replacement or supplement to the current anti-HIV-1 therapies. An outcome of the previous funding period was the development of a three pronged genetic approach for inhibiting viral entry and replication. This triple small RNA gene therapy has been tested for feasibility and safety in a first in human blood stem cell gene therapy trial in AIDS/lymphoma patients. Based upon the results of this four patient trial we believe it is imperative to progress to new and different small RNA anti-viral combinations. The proposed studies take advantage of a set of novel inhibitors of HIV-1 infection which use different mechanisms of action. We hypothesize that such combinations will prevent the emergence of viral resistant mutants and at the same time be non-toxic.
Specific Aim 1 will select for in vitro evolved "RNA aptamers that selectively bind HIV-1 integrase and block integrase function". The aptamers will be expressed in hematopoietic cells as part of a combinatorial approach designed to block viral infection.
Specific Aim 2 will "combine nucleolar localizing anti-HIV RNAs, microRNA mimics, tRNA-anti CCR5 shRNA, U5 tRNA shRNA fusions and the anti-integrase aptamers in a lentiviral vector for transduction of hematopoietic progenitor cells". The results from this research will provide novel combinations of anti-HIV RNAs for functional testing in vivo.
Specific Aim 3 addresses the "in vivo analyses of combinatorial constructs in the humanized Rag2-/- 3c-/- (RAG-hu) mouse model". This humanized mouse model represents a novel and facile system for testing the efficacy and safety of anti-HIV gene therapy strategies since gene modified human hematopoietic stem and progenitor cells can engraft and differentiate into hematopoietic lineages that are infectible by HIV-1 in vivo. Overall, this program is designed to be a path towards bringing new small RNA based gene therapy combinations to the clinic for use in future human gene therapy applications.

Public Health Relevance

Combinatorial anti-HIV small drug therapies have significantly prolonged the time to progression to AIDS for HIV-1 infected individuals. Nevertheless there are toxicity, viral resistance and compliance problems associated with a lifetime of daily use of these drug combinations. The proposed studies capitalize upon the safety and feasibility of a study exploring combinatorial small RNA gene therapy for the treatment of HIV-1 infection. Combinations of novel anti-HIV-1 small RNAs will be tested for their ability to provide long- term inhibition of HIV-1 infection in cultured human blood cells and in a humanized mouse model. The long term goal of these studies is the establishment of potent, non-toxic combinations of anti-HIV small RNAs for use in gene therapy treatment of HIV-1 infection.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01AI042552-17
Application #
8683060
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Voulgaropoulou, Frosso
Project Start
Project End
Budget Start
Budget End
Support Year
17
Fiscal Year
2014
Total Cost
Indirect Cost
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
City
Duarte
State
CA
Country
United States
Zip Code
91010
Chung, Janet; Scherer, Lisa J; Gu, Angel et al. (2014) Optimized lentiviral vectors for HIV gene therapy: multiplexed expression of small RNAs and inclusion of MGMT(P140K) drug resistance gene. Mol Ther 22:952-63
Zhou, Jiehua; Rossi, John (2014) Cell-type-specific aptamer and aptamer-small interfering RNA conjugates for targeted human immunodeficiency virus type 1 therapy. J Investig Med 62:914-9
Zhou, Jiehua; Neff, C Preston; Swiderski, Piotr et al. (2013) Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Mol Ther 21:192-200
Zhou, Jiehua; Shum, Ka-To; Burnett, John C et al. (2013) Nanoparticle-Based Delivery of RNAi Therapeutics: Progress and Challenges. Pharmaceuticals (Basel) 6:85-107
Ehsani, Ali; Alluin, Jessica V; Rossi, John J (2013) Cell cycle abnormalities associated with differential perturbations of the human U5 snRNP associated U5-200kD RNA helicase. PLoS One 8:e62125
Chung, Janet; DiGiusto, David L; Rossi, John J (2013) Combinatorial RNA-based gene therapy for the treatment of HIV/AIDS. Expert Opin Biol Ther 13:437-45
Cillo, Anthony R; Krishnan, Amrita; Mitsuyasu, Ronald T et al. (2013) Plasma viremia and cellular HIV-1 DNA persist despite autologous hematopoietic stem cell transplantation for HIV-related lymphoma. J Acquir Immune Defic Syndr 63:438-41
Burnett, John C; Rossi, John J (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60-71
Sun, Guihua; Li, Haitang; Wu, Xiwei et al. (2012) Interplay between HIV-1 infection and host microRNAs. Nucleic Acids Res 40:2181-96
Zhou, Jiehua; Neff, C Preston; Liu, Xiaoxuan et al. (2011) Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol Ther 19:2228-38

Showing the most recent 10 out of 65 publications